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Abstract8

In their 1984 paper, Lasota, Li, and Yorke presented an argument that9

if S : [0, 1] → [0, 1] is piecewise C2 with inf |S′| > 1, then its associated10

Frobenius-Perron operator is asymptotically periodic. These results have11

been generalized in later works, primarily with functional-analytic meth-12

ods using bounded variation. In this paper we present a novel method to13

prove a past result using constructive techiques and the Spectral Decom-14

position Theorem.15

1 Introduction16

If (X,µ) is a measure space, µ is nonsingular, and S : X → X is a measurable17

transformation, then a fundamental question is how its iterates Sn : X → X,18

i.e. the dynamical system generated by S, behave. In studying such dynamical19

systems, often the behavior of densities of points under repeated applications of20

an operator S is examined, rather than the behavior of individual points. By21

a density, we mean a measurable, non-negative function f : X → R such that22 ∫
X
fdµ = 1. We define the action of the transformation S on f as the (unique)23

associated Frobenius-Perron operator P : L1(x) → L1(x), which satisfies that24

for every A ∈ X,25 ∫
A

Pfdµ =

∫
S−1(A)

fdµ .
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It follows that if X is a random variable with density function f , then S(X )1

is a random variable with density function Pf . From this framing, the question2

of whether Sn(X ) will converge in distribution arises, and it suffices to examine3

the convergence of the density functions Pnf in L1. If every density function f4

converges, we say that P is asymptotically stable. Since examining the behavior5

of the random variables Sn(X ) is sometimes more tractable than working with6

the individual orbits of Sn(x), it can be advantageous to explore this functional7

analytic point of view more deeply.8

In this paper we focus on dynamical systems on the unit interval X = [0, 1]9

given by a function S : X → X that is piecewise smooth and satisfies |S′(x)| ≥10

r > 1 for all x ∈ [0, 1]. The stochastic properties of such dynamical systems have11

been extensively studied, going back to Rényi [15], who established the existence12

of an invariant distribution f∗, satisfying Pf∗ = f∗, for the functions S(x) = rx13

mod 1. The existence of an invariant density f∗ is crucial in understanding the14

dynamical system generated by S, as the corresponding distribution µ∗, defined15

by µ∗(A) :=
∫
A
f∗dµ, is invariant under S, and thus may be examined under16

ergodic theoretic methods.17

This line of inquiry was explored further by Lasota and Yorke [10], who18

proved the existence of invariant distributions for certain functions S that are19

piecewise C2. These results were further developed in [12], [1], [19], and [18]20

where ergodic properties of similar dynamical systems have been examined.21

Related questions are still studied, but are beyond the scope of this paper. The22

approaches used in these papers are also useful for studying the convergence of23

Cesaro means 1
N

∑
n≤N Pnf and, to a lesser extent, for the convergence of the24

sequence Pnf . However, while an invariant density may exist, Pnf need not25

converge in L1, and so the methods struggle to generalize to these questions.26

For example, for any piecewise C2 function S, let27

T =

{
S(2x)+1

2 : 0 ≤ x < 1
2

S(2x−1)
2 : 1

2 ≤ x < 1
.

Let P be the Frobenius-Perron operator associated to T . It is clear that if a28

function f has support in [0, 0.5), then Pf must have support in [0.5, 1] and29

vice versa; hence Pnf does not converge in L1.30

To deal with such phenomena Hofbauer and Keller in [5] introduced the31

concept of asymptotic periodicity, meaning that there exists some K ∈ N so32

that PnKf converges in L1 for all distributions f . Lasota and Yorke obtained33

an initial result in [9]. This was later strengthened by Keller [7] to show that if34

a function S is piecewise C1; fulfills |S′| > r > 1 for some r; and for each C1
35

piece S|Ii , 1/S|′Ii has bounded variation, then S has an asymptotically periodic36

Frobenius-Perron operator. Keller’s work used the ergodic theorem of Ionescu37

Tulcea and Marinescu [17]. These results were further generalized by Rychlik38

[16]; Liverani [13]; Jab lonski and Góra [14]; Bugiel [2]; Góra [3]; Góra, Li,39

and Boyarsky [4]; and Islam [6]. The newer results focus on functions fulfilling40

certain bounds on variation and oscillation.41

In this paper we present a novel, constructive argument that sets up for the42
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application of the Spectral Decomposition Theorem by Lasota and Yorke [9].1

Below, we summarize the important definitions, as well as our results.2

Definition 1.1. We say that a functions S : [0, 1] → [0, 1] is a piecewise3

r-dilation if it fulfills the following conditions. Let the set4

B = {x : S′(x)does not exist} .

1. There is a finite collection of disjoint open intervals over an index set I,5

{Ii}i∈I , whose closures cover [0, 1]. For each i ∈ I, the restriction of S6

to Ii\B has a monotonic derivative. Further the restriction of S to Ii is7

continuous and injective.8

2. For every x ∈ [0, 1]\B, |S′(x)| ≥ r > 1.9

3. The sets B and S(B) have Lebesgue measure 0.10

Theorem 1.2. If S is a piecewise r-dilation for r > 1, then the associated11

Frobenius-Perron operator is asymptotically periodic.12

Above is the main theorem that we prove in this paper. Rather than require13

a condition on the variation of the first derivative, we use a monotonicity as-14

sumption. This condition is implied by the hypotheses of Lasota and Yorke in15

[9], and implies the hypotheses of Keller in [7]. To our knowledge, all work thus16

far has focused on manipulating variation and oscillation, generally showing that17

the Frobenius-Perron operator maps functions into a space where the variation18

of all of the functions is bounded by some C, which is sufficient to apply the19

Spectral Decomposition Theorem of Lasota and Yorke [9] or a similar theorem.20

Here, we require the monotonicity of S′ for clarity and ease of comparison with21

other theorems, though it is the following equivalent condition that we truly22

need.23

Remark. A function S is a piecewise r-dilation if and only if it fulfills the24

following conditions.25

Let the set26

B = {x : S′(x)does not exist} .

1. There is a finite collection of disjoint open intervals over an index set I,27

{Ii}i∈I , whose closures cover [0, 1]. For each i ∈ I the restriction of S to28

Ii is continuous and injective.29

2. For every x ∈ [0, 1]\B, |S′(x)| ≥ r > 1.30

3. The sets B and S(B) have Lebesgue measure 0.31

4. Let P be the Frobenius-Perron operator associated to S, and let I ⊆ Ii for32

some I. Then if Lt is the set of all points where P1I > t, then Lt can be33

expressed as an interval.34
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Definition 1.3. We call a collection of non-negative functions {dn} in L1([0, 1])1

and non-negative numbers {cn,j} in R a simple decomposition of an interval2

I if d0 = 1I ,3

1.

P (dn) =
1

r

dn+1 +
∑
j∈I

cn,j · 1Ij


for n ≥ 0, and4

2.
∞∑

n=0

∥dn∥L1

rn
< ∞ .

The proof of Theorem 1.2 is based on the following proposition.5

Proposition 1.4. Let S be a piecewise r-dilation for r > 2 over a finite collec-6

tion {Ii}i∈I . If I is an interval such that I ⊆ Ii for some i ∈ I, then I has a7

simple decomposition with each ∥dn∥L1 ≤ 2n.8

We will discuss this section of the proof more in Section 3, but the construc-9

tion for Proposition 1.4 relies on the fact that after each application of P to a10

distribution f , we may then examine applying P to the level sets of Pf , rather11

than Pf itself. We then apply a trimming process, in which we are able to12

separate any part of the interval that entirely contains an Ii, resulting in the13

cn,j · 1Ij terms. This splits the original interval into two smaller pieces, each of14

which fulfill the conditions in Lemma 1, and so we may apply P and repeat the15

process. We compose dn by summing over all of the pieces that result after n16

iterations, and integrating across all of the level sets. Since 0 ≤ t ≤ 1, and each17

piece splits into at most two pieces, we have that ∥dn∥L1 1 ≤ 2n. Since S is a18

piecewise dilation of r > 2, it follows that a sum over (2/r)n converges, giving19

condition 2 of Definition 1.3.20

It may be helpful to the reader to see these decompositions in action, and so21

for the remainder of the introduction, we will look at a setting originally exam-22

ined by Rényi [15]. In this setting, we may construct the simple decomposition23

directly, though the process is a simplified version of what we will do in Section24

3. Let S = rx mod 1, or more formally,25

S(x) =

{
rx− ⌊rx⌋ : x ∈ [0, 1]

0 : x ̸∈ [0, 1]

and r ≈ 1.6 satisfies r(r − 1) = 1. In this setting, Rènyi proved asymptotic26

stability; while it is possible to do a general convergence argument that can27

also give asymptotic stability here, it is fairly long and tedious. Instead, we28

will use the Spectral Decomposition Theorem of Lasota and Yorke [9], though29

this restricts us to asymptotic periodicity without an additional argument. In30
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this setting, we may explicitly state the associated Frobenius-Perron operator1

P : L1([0, 1]) → L1([0, 1]) as2

P (f)(x) =
1[0,1](x)

r

1∑
z=0

f

(
x− z

r

)
.

We discuss obtaining such explicit constructions of the Frobenius-Perron op-3

erator at the beginning of Section 3. As we are working with L1 functions,4

our equalities all hold almost everywhere. Then consider that for the interval5

(0, r − 1),6

P1[0,r−1](x) =
1[0,1](x)

r

∑
z∈Z

1[0,r−1]

(
x− z

r

)
.

Note that it is only possible that x−z
r ∈ [0, r − 1] and x ∈ [0, 1] when z = 0, as7

r(r − 1) = 1. Then8

P1[0,r−1](x) =
1

r
· 1[0,r−1]

(x
r

)
=

1

r
· 1[0,r(r−1)](x)

=
1

r
· 1[0,1](x) =

1

r

(
1[0,r−1](x) + 1[r−1,1](x)

)
almost everywhere. Further,9

P1[r−1,1](x) =
1

r

(
1[r(r−1)−1,r−1]

)
(x) =

1

r
· 1[0,r−1](x) .

Let I0 = (0, r − 1) and I1 = (r − 1, 1). We define the simple decomposition of10

I0, as d0 = 1I0 and dn = 0 for each n > 0. Additionally, c0,0 = c0,1 = 1, and11

cn,i = 0 for n > 1. We can also define the simple decomposition of I1 as follows:12

let D0 = 1I1 and Dn = 0 for n > 1; let C0,0 = 1 and Cn,j = 0 for all other pairs13

(n, j) ̸= (0, 0). It is straightforward to verify that these are both well defined.14

It is of course possible to construct a simple decomposition for each I ⊆ Ii, but15

the argument mainly rests upon the construction of the decompositions of each16

Ii, and so for now we will act as though this suffices.17

For readability, we have used upper and lower case letters to denote the18

different decompositions; in later sections we will write them as dn,i and cn,i,j ,19

where we would have i, j ∈ {0, 1} in this example. As an additional comment20

on notation, we will write indicator functions such as those above as 1[a,b], even21

when the interval may not be closed. As we are working with equality almost22

everywhere, this does not affect the statements.23

It follows then that24

P
(
a1[0,r−1] + b1[r−1,1]

)
=

a + b

r
1[0,r−1] +

a

r
1[r−1,1] ,

and so by induction there are some numbers am0 and am1 such that25

Pm(1[0,r−1]) = am0 1[0,r−1] + am1 1[r−1,1] ,
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where1

am+1
1 =

am0
r

and2

am+1
0 =

am0 + am1
r

.

We may inductively calculate these constants by noting that necessarily a00 = 13

and a01 = 0. We prove this more generally Lemma 2.7. It is a straightforward4

exercise to show that am0 and am1 converge in m. Doing such an argument in5

general is rather long, and it is much simpler to show that the structure on the6

ami implies that P is weakly constrictive to the space of functions that can be7

expressed as8

λ01[0,1] + λ11[0,r−1]

for 0 ≤ λ0 ≤ 1 and 0 ≤ λ1 ≤ 1/r. There is some extra work that is necessary in9

order to show this that we will omit for this section as our goal is only to give an10

example of constructing decompositions. To complete the argument we would11

need to construct simple decompositions for each I ⊆ Ii in a similar way, and12

then use our definition of simple decompositions and the definition of the ami to13

show that they approach functions of the form λ01[0,1] + λ11[0,r−1]. Once all of14

this is done, we may apply the Spectral Decomposition Theorem of Lasota and15

Yorke [9], restated in Theorem 2.5, to obtain asymptotic periodicity.16

In Section 2, we will assume that Proposition 1.4 holds, and use it to show17

that the hypotheses of the Spectral Decomposition Theorem of Lasota and Yorke18

[9] hold, and thereby we conclude that our main theorem holds. It is also possible19

to instead improve Proposition 1.4 to give even more structure to the decom-20

positions, and then use the additional structure to directly prove convergence.21

This was our original approach, but it added another ten to fifteen pages to the22

proof, and so we have instead adapted the proof to follow a pattern similar to23

that of [9], though our methods to reach the hypotheses of the Spectral Decom-24

position Theorem are still quite different. In Section 3, we prove Proposition25

1.4 by applying similar ideas as in the above problem, where we demonstrate26

that Pn1I eventually contains Ij in its support; by removing this interval we27

obtain a ci and decay in our ∥dn∥L1 .28

2 Convergence29

Before beginning the main proof, we will quickly apply a reduction to Theorem30

1.2.31

Theorem 2.1. If S is a piecewise r-dilation for r > 2 such that S′ does not32

change sign on any Ii, then the associated Frobenius-Perron operator is asymp-33

totically periodic.34

Theorem 2.1 implies Theorem 1.2. If S is a piecewise r-dilation, then so too35

is Sn. Choosing N large enough that rN > 2, we may repartition the Ii so36

6



that SN satisfies the hypotheses of Theorem 2.1. This implies that if P is the1

Frobenius-Perron operator for S, PN is asymptotically periodic. Then P must2

be asymptotically periodic as well.3

Lasota and Mackey’s book [11] provides a good overview of their approach4

to this problem, as well as more details on the definitions that we restate below.5

We will state them here only for L1, though they may be generalized to Lp.6

We call a set F ⊂ L1 to be weakly precompact if each sequence fn ∈ F has7

a weakly convergent subsequence in L1. The book [11] also provides the logic8

behind the following lemma.9

Lemma 2.2. For a non-negative function g ∈ L1, the set of functions f ∈ L1
10

such that |f | ≤ g is weakly compact.11

To use other theorems, we will quickly define a Markov operator P , following12

the definition of Lasota and Mackey in [11]. The proof that P is a Markov13

operator can be found in [11].14

Definition 2.3. An operator P : L1 → L1 is a Markov operator if it fulfills the15

following conditions:16

• If f is a density function, then so is Pf .17

• If f is a density function, then ∥Pf∥L1 = ∥f∥L1 .18

Lemma 2.4. The Frobenius-Perron operator is a Markov operator.19

We call a Markov operator weakly constrictive if there exists a weakly pre-20

compact set F such that for every f ∈ L1,21

lim
n→∞

d(Pnf,F ) = 0 .

We denote the distance between an element g ∈ L1 and the set F as d(g,F )22

and define it as the infimal distance between g and any element of F . We23

use the result from [8] to simplify the statement of the Spectral Decomposition24

Theorem so that it applies to weakly constrictive operators. The proof of the25

Spectral Decomposition Theorem can be found in [9].26

Theorem 2.5 (Spectral Decomposition Theorem). Let P be a weakly constric-27

tive Markov operator. Then there exists an integer b; two sequences of nonnega-28

tive functions {gi}bi=1 ∈ L1 with ∥gi∥L1 = 1 and {ki}bi=1 ∈ L∞; and an operator29

Q : L1 → L1 such that for all f ∈ L1, Pf may be written as30

Pf(x) =

b∑
i=1

(∫
f(x)ki(x)dx

)
gi(x) + Q (f(x)) .

The functions gi and operator Q have the following properties:31

1. gi(x) · gj(x) = 0 for all i ̸= j, so the functions gi have disjoint supports.32
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2. There exists a permutation α(i) on {1, ..., b} such that Pgi = gα(i).1

3. For every f ∈ L1,2

lim
n→∞

∥Pn (Q (f))∥L1 = 0 .

This says that Qf acts as a decaying error term. Thus if K is the order of α,3

then PKnf converges in L1.4

We have two objectives for this section then. Firstly, we need to construct5

a weakly precompact set F ; this will be given by our simple decompositions.6

Secondly, we will have to show that Pnf approaches F ; this will come from the7

approximation of measurable functions by step functions.8

In this section, we will assume that Proposition 1.4 holds. We fix an I ⊂ Ii9

for some i, and let Dm and Cm,i be its simple decomposition. We further fix the10

simple decompositions dn,i and cn,i,j , each being a simple decompositions of Ii;11

while these are not necessarily unique, we will assume that some fixed choice of12

them is made for the duration of this section.13

For clarity, we will use i and j indices to refer to interactions with the Ii14

given in Theorem 2.1. We use m to refer to the terms that will be present after15

m applications of P , while n will apply for our decompositions of the Ii.16

Definition 2.6. Let S be an r-dilation for r > 2. We say that the constants17 {
amn,i

}
are coefficients of a decomposition of I if they are defined in the18

following way. Firstly,19

a0n,i = 0 (1)

for n ≥ 0 and i ∈ I. We then induct on m from m = 0 to define20

am+1
0,i =

1

r

Cm,i

rm
+
∑
j∈I

∞∑
n=0

cn,j,ia
m
n,j

 (2)

for i ∈ I, and21

am+1
n+1,i =

amn,i
r

(3)

for n ≥ 0 and i ∈ I.22

Lemma 2.7. If amn,i are the coefficients of a decomposition of I, then for all23

m ≥ 0,24

Pm1I =
Dm

rm
+
∑
i∈I

∞∑
n=0

amn,i · dn,i . (4)

While Definition 2.6 is strict enough to define a unique object, it is not the25

only object that could satisfy Lemma 2.7, though there would be little purpose26

in creating an alternative object, as coefficients of a decomposition have a useful27

structure for later parts of the proof.28
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Proof. The case for m = 0 is trivial, as1

P 01I =
D0

r0
+
∑
i∈I

∞∑
n=0

0 · dn,i = D0 = 1I

by (1). We proceed by induction on m, and aim to show that the lemma holds2

for m + 1. Applying the linearity of P and the induction hypothesis, we have3

that4

Pm+11I = P

(
Dm

rm
+
∑
i∈I

∞∑
n=0

amn,i · dn,i

)
= P

(
Dm

rm

)
+
∑
i∈I

∞∑
n=0

amn,i · P (dn,i) .

By the definition of a simple decomposition, it follows that5

Pm+11I =
Dm+1 +

∑
j∈I Cm,jd0,j

rm+1
+
∑
i∈I

∞∑
n=0

amn,i
dn+1,i +

∑
j∈I cn,i,jd0,j

r
.

Recalling our definition of am+1
0,i in (2), we may reorder the sum to be6

Pm+11I =
Dm+1

rm+1
+
∑
i∈I

am+1
0,i d0,i +

∑
i∈I

∞∑
n=0

amn,k
r

dn+1,k .

The result follows by replacing amn,i/r with am+1
n+1,i and then reindexing the last7

sum for n′ = n + 1.8

Lemma 2.8. If amn,i are the coefficients of the decomposition of I, then for all9

m,n ≥ 0 and i ∈ I,10

amn,i ≤
∥1I∥L1

rn ∥1Ii∥L1

.

Proof. Note that by Lemma 2.4 and Lemma 2.7, we have that11

∥1I∥L1 = ∥Pm1I∥L1 =

∥∥∥∥∥Dm

rm
+
∑
i∈I

∞∑
n=0

amn,i · dn,i

∥∥∥∥∥
L1

.

As all terms are positive, it follows that12

∥II∥L1 =
∥Dm∥L1

rm
+
∑
i∈I

∞∑
n=0

amn,i · ∥dn,i∥L1 ≥ am0,i ∥d0,i∥L1 = am0,i ∥1Ii∥L1 ,

and so the lemma holds for n = 0. Then if m > n, note that by (3),13

amn,i =
am−n
0,i

rn
≤

∥1I∥L1

rn ∥1Ii∥L1

.
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If m ≤ n, then notice that by (3) and (1),1

amn,i =
a0n−m,i

rm
= 0 ≤

∥1I∥L1

rn ∥1Ii∥L1

.

Thus for all n,m ≥ 0, and i ∈ I, the lemma holds.2

Definition 2.9. Let dn,i and cn,i,j be fixed simple decompositions of each Ii.3

We define g(x), our upper bound, as4

g(x) =
∑
i∈I

1

∥1Ii∥L1

∞∑
n=0

dn,i(x)

rn
.

We define F as the set of all functions f ∈ L1 with |f | ≤ g.5

The family F will serve as the pre-compact space to fulfill the hypotheses6

of Theorem 2.5.7

Proof of Theorem 2.1. Let f ∈ L1([0, 1]) be such that ∥f∥L1 = 1. Fix a δ > 0;8

we aim to show that for each sufficiently large m there exist some distribution9

fm ≤ g such that ∥Pmf − fm∥L1 < δ. We begin by choosing a step function10

φ ∈ L1([0, 1]) such that ∥f − φ∥L1 < δ
2 and ∥φ∥L1 = 1. Notice that we may11

write12

φ =

ℓ∑
k=1

λk1Jk

for some λk ∈ R+, ℓ ∈ N, and Jk ⊂ [0, 1] intervals. We further require that each13

Jk is contained in some Ii. Notice that14

ℓ∑
k=1

λk ∥1Jk
∥L1 = 1 . (5)

Let Dm,k and Cm,k,i form the simple decomposition of each Jk. Further, each15

has coefficients of decomposition amn,k,i. Choose M large enough that for every16

m > M and for each k,17

λk ∥Dm,k∥L1

rm
<

δ

2ℓ
. (6)

Recall that by Lemma 2.7, for each m and k,18

λk · Pm1Jk
= λk

Dm,k

rm
+ λk ·

∑
i∈I

∞∑
n=0

amn,k,i · dn,i . (7)

Then if we define fm as the second term in (7), so that19

fm(x) =

ℓ∑
k=1

λk ·
∑
i∈I

∞∑
n=0

amn,k,i · dn,i ,

10



it follows that1

Pmφ− fm =

(
ℓ∑

k=1

λkP
m1Jj

)
− fm =

ℓ∑
k=1

λk
Dm,k

rm
.

Then for m > M ,2

∥Pmφ− fm∥L1 ≤
ℓ∑

k=1

λk

∥Dm,k∥L1

rm
≤

ℓ∑
k=1

δ

2ℓ
=

δ

2
(8)

By Lemma 2.8 and (5), we see that3

ℓ∑
k=1

λka
m
n,k,i ≤

1

rn ∥1Ii∥L1

ℓ∑
k=1

λk ∥1Jk
∥L1 =

1

rn ∥1Ii∥L1

.

Then it follows that for each m > M ,4

fm(x) =
∑
i∈I

∞∑
n=0

dn,i(x)

ℓ∑
k=1

λka
m
n,k,i ≤

∑
i∈I

∞∑
n=0

dn,i(x)

rn ∥Ii∥L1

= g(x) .

We may now examine ∥Pmf − fm∥L1 . Notice that by the triangle inequality,5

∥Pmf − fm∥L1 ≤ ∥Pmf − Pmφ∥L1 + ∥Pmφ− fm∥L1 ,

and so by the linearity of P and (8), when m > M ,6

∥Pmf − fm∥L1 ≤ ∥Pm(f − φ)∥L1 +
δ

2
.

By Lemma 2.4, we may reduce the left term to ∥f − φ∥L1 . It follows from our7

initial hypothesis on φ that ∥f − φ∥L1 ≤ δ/2 for m > M . Thus P is weakly8

constrictive. Applying the Spectral Decomposition Theorem, it follows that P9

is asymptotically periodic.10

3 Discretization11

Fix a piecewise r-dilation S. We will begin by constructing the Frobenius-Perron12

operator P .13

By Condition 1 of Definition 1.1, the restriction Si = S|Ii : Ii → S(Ii) is a14

bijection. Then we define the almost-inverses as follows.15

hi(x) =

{
(Si)

−1(x) : x ∈ Si(Ii)

0 : x ̸∈ Si(Ii)
(9)

We use them to define the Frobenius-Perron operator associated to S.16

P : L1([0, 1]) → L1([0, 1]) ,

11



1

(P (d)) (x) =
∑
i∈I

|h′
i(x)| · d (hi(x)) .

By the third condition of Definition 1.1, this is well-defined almost everywhere.2

In this construction, P can move inside of integrals according to the following3

lemma.4

Lemma 3.1. If d ∈ L1(S) is non-negative, and5

d(x) =

∫
ft(x)dt

for a family of distributions ft, then6

P (d)(x) =

∫
P (ft)(x)dt .

Proof. Notice that7

Pd(x) =

∞∑
i=0

|h′
i(x)| · d (hi(x)) =

∞∑
i=0

|h′
i(x)|

∫
ft (hi(x)) dt .

We now exchange the order of the sum and integral and then apply the definition8

of P to see that9

Pd(x) =

∫ (∑
i∈I

|h′
i(x)| · ft(hi(x))

)
dt =

∫
Pft(x)dt .

10

We restate a remark from the introduction here.11

Remark. If I ⊆ Ii is an interval, then so is S(I). Further, because hi is12

monotonic on Ii and hj = 0 on Ii if j ̸= i, it follows that the level set of13

P (1I)(x),14

Jt = {x : P (1I)(x) > t} ,

is an interval as well.15

As P (1I)(x) ≤ 1
r ,16

P (1I)(x) =

∫ 1/r

0

1Jt
(x)dx =

1

r

∫ 1

0

1Js
(x)ds .

We will often use a substitution for t′ = t/r so that our integral runs from 0 to17

1, and we extract a 1/r factor from the integral.18

Combining Lemma 3.1 and the above remark, if I is an interval such that19

for every m ≤ n, Sm(I) ⊂ Iim for some im, then there exists a collection of20

intervals Iv, v ∈ [0, 1]n, such that21

Pnd(x) =
1

rn

∫
v∈[0,1]n

1Iv (x)dv .

12



To construct this more exactly, it is useful to introduce definitions that let1

us work inductively on [0, 1]n more easily. We begin with a definition for a2

countable tree, which we then expand to a “continuous” tree. We will assume3

that I = {0, 1, ..., n} for some n ∈ N.4

Definition 3.2. We call TI to be the tree over I and define it as the collection5

of all (n+1)-tuples of non-negative integers (ik)nk=0 that have i0 = 0 and ik ∈ I.6

It is often easiest to write an element e ∈ TI explicitly as e = (0, i1, i2, ...in).7

We denote the root element of the tree, the unique element of size 0, as (0). We8

recommend thinking of i0 as representing beginning at the root of the tree and9

each ik as the choice of children that leads to the current position. Below, the10

reader can see an example of a tree over {0, 1} written in our notation.11

(0)

(0, 0) (0, 1)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)
...

...
...

...

Figure 1: tree notation

Definition 3.3. If e ∈ TI , we call |e| the size of e, where if e = (ik)nk=0, then12

|e| = n

The choice to begin counting size at 0 instead of 1 will allow us to have13

powers r|e| in a natural way.14

Definition 3.4. If e, f ∈ TI , e = (ik)nk=0, and f = (jk)mk=0, then we say that15

e ⊆ f if n ≤ m and ik = jk for each 0 ≤ k ≤ n16

Definition 3.5. If e ∈ TI and |e| > 0, we define e to be the unique element so17

that e ⊂ e and |e| + 1 = |e|.18

Definition 3.6. If e, f ∈ TI , e = (ik)nk=0, and f = (jk)mk=0 then we say that19

their conjunction ef ∈ TI is (ℓk)n+m
k=0 , where if k ≤ n, ℓk = ik, and for k > n,20

ℓk = jk−n. It is helpful to note that written out,21

ef = (0, i1, . . . , in, j1, . . . , jm) .

13



Effectively, a conjunction treats the node e as the root of a sub-tree and then1

chooses f in that sub-tree. This is why we have to remove the first 0 element2

from f .3

Definition 3.7. If e ∈ TI , let D
h(e) = {f ∈ TI : e ⊆ f, |f | = |e| + h}4

We will often write D1(e) simply as D(e) and call them the descendants of5

e. Note that for all f ∈ D(e), f = e.6

We use similar notation for the continuous tree over [0, 1], which we denote7

T[0,1], the collection of all n + 1 tuples of real numbers (t0, t1, ..., tn) that fulfill8

• t0 = 09

• tk ∈ [0, 1] for all 0 ≤ k ≤ n.10

For the sake of consistency, we will denote the elements of TI with lower-case11

letters starting from e and the elements of T[0,1] with upper-case letters starting12

from E.13

Definition 3.8. We say that a non-trivial interval I, which is contained in14

some Ij, has a complicated decomposition15

(TI , T[0,1], Ie,E , ce,E,i)

if ce,E,i ≥ 0, the Ie,E are intervals whenever |e| = |E|, and I(0),(0) = I. We16

additionally require the following two conditions.17

1.

P (1Ie,E )(x) =
1

r

(∫ 1

0

∑
i∈I

1Ie(0,i),f(0,t)
(x)dt

)
+

1

r

∑
i∈I

ce,E,i · 1Ii

2. ∑
e∈Tk

1

r|e|

(∫
|E|=|e|

∥∥1Ie,E
∥∥
L1 dE

)
< ∞

Above we use
∫
|E|=n

∥1e,E∥L1 dE to be the integral over [0, 1]n, where for a18

vector v = (t1, ..., tn) ∈ [0, 1]n, E = (0, t1, ...tn).19

Complicated decompositions allow us to make use of Lemma 3.1, and thus20

are easier to initially construct. However, due to the parallels between Condi-21

tions 1 and 2 for this definition and Definition 1.3, we are able to obtain the22

following Lemma.23

Lemma 3.9. If I has a complicated decomposition, then it also has a simple24

decomposition.25

Remark. Both complicated and simple decompositions are not unique. In fact,26

one can obtain even stronger conditions on them by refining the construction.27

For example, it can be proved that one can construct a set G ⊂ I so that for28

each i ∈ G a simple decomposition of Ii can be made so that ci,n,j = 0 if j ̸= i,29

and for each i ̸∈ G, ci,n,j = 0 if j ̸∈ G. As this is not necessary to prove our30

main result, we do not delve further into this fact.31

14



Proof. Let (TI , T[0,1], Ie,E , ce,E,i) be a complicated decomposition of I. Note1

that I(0),(0) = I. Then we define2

dn(x) =
∑
|e|=n

∫
|E|=n

1Ie,E (x)dE

and3

cn,i =
∑
|e|=n

∫
|E|=n

ce,E,idE .

Then notice that by Definition 3.8 and Lemma 3.1,4

Pdn(x) =
∑
|e|=n

∫
|E|=n

(
1

r

(∫ 1

0

∑
i∈I

1Ie(0,i),E(0,t)
(x)dt

)
+

1

r

∑
i∈I

ce,E,i · 1Ii(x)

)
dE .

It is clear that the last terms, once separated, represent the cn,i.5

We can also note that summing over |e| = n, and then e(0, i) is the same as6

summing over all f such that |f | = n + 1. Similarly we reduce the integrals to7

an integral over |F | = n + 1 and conclude that8

Pdn =
1

r

 ∑
|f |=n+1

∫
|F |=n+1

1If,F (x)dF

+
1

r

∑
i∈I

1Ii
∑
|e|=n

∫
|E|=n

ce,E,idE

 .

Then directly applying our definitions of dn and cn,i, it is clear that9

Pdn =
1

r

(
dn+1 +

∑
i∈I

cn,i · 1Ii

)
.

This shows that condition 1 of Definition 1.3 is fulfilled. Condition 2 is imme-10

diate from the second condition of Definition 3.8.11

Because of Lemma 3.9 in order to prove Proposition 1.4, it suffices to prove12

the following.13

Proposition 3.10. Let I be a non-trivial interval contained in some Ii. Then14

I has a complicated decomposition (TI , T[0,1], Ie,E , ce,E,i).15

Proof. Define I(0),(0) = I, and proceed with an inductive contstruction, assum-16

ing that Ie,E is defined for some |e| = |E|. We define17

Je,E,t =

{
x : P (1Ie,E )(x) ≥ t

r

}
.

Note that if Ie,E is an interval entirely contained in some Ij , then Je,E,t is18

an interval as well. We now define Ie(0,i),E(0,t) as well as constants Ce,E,i,t as19

follows.20

15



If Ii ⊆ Je,E,t, then1

Ie(0,i),E(0,t) = Ø

and2

Ce,E,i,t = 1 .

Then if Ii is not entirely contained in Je,E,t, we define3

Ie(0,i),E(0,t) = Je,E,t

⋂
Ii

and4

Ce,E,i,t = 0 .

In this construction, whenever we can “remove” a copy of Ii from Je,E,t.5

When we do, we create the decay to fulfill Condition 2 of Definition 3.8 in6

exchange for obtaining a term 1Ii .7

Finally, we define8

ce,E,i =

∫ 1

0

Ce,E,i,tdt .

It is clear from the above definitions that each Ie(0,i),E(0,t) is an interval9

contained inside Ii. Further, since |S′| ≥ r, it follows that
∣∣P1Ie,E

∣∣ ≤ 1/r, and10

so we need only consider the Je,E,t for 0 ≤ t ≤ 1. Then it follows that Condition11

1 of Definition 3.8 holds, as12

1

r

(∫ 1

0

∑
i∈I

1Ie(0,i),E(0,t)
(x)dt

)
+

1

r

∑
i∈I

ce,E,i · 1Ii(x)

is equal to13

1

r

∫ 1

0

(∑
i∈I

1Ie(0,i),E(0,t)
(x) + Ce,E,t · 1Ii(x)

)
dt ,

which in turn we may write as14

1

r

∫ 1

0

∑
i∈I

1Je,E,t
(x) · 1Ii(x)dt =

1

r

∑
i∈I

∫
Ii

1Je,E,t
(x)dt =

1

r

∫ 1

0

1Je,E,t
(x)dt .

By definition of the level sets, this is precisely P1e,E(x).15

In order to examine Condition 2 of Definition 3.8, we must first notice that16

Je,E,t is an interval. Since the union of the closures of the Ii cover [0, 1], there17

may only be two Ii such that Ii∩Je,E,t ̸= ∅, Ii. If we fix t, we may call these two18

intervals Ii1 and Ii2 . Then for all other i ̸= i1, i2, it follows that Ie(0,i),E(0,t) = ∅.19

Notice that if Ie,E = ∅ and e ⊂ f , E ⊂ F , then If,F = ∅ as well.20

Then for a fixed E with |E| = n, it follows that out of all choices of e ∈ T∞,21

at most 2n of them have that Ie,E ̸= ∅. We define 1Ie,E ̸=∅ to be 1 if Ie,E is22

nonempty and 0 otherwise. From here we notice that for each n ≥ 0,23

∑
|e|=n

(∫
|E|=n

∥∥1Ie,E
∥∥
L1 dE

)
≤
∫
|E|=n

∑
|e|=n

1Ie,E ̸=∅dE . (10)

16



By our remark above, we may bound (10) above by1 ∫
|E|=n

2ndE .

Since each element E with |E| = n is a vector in [0, 1]n, the measure of the2

space is 1, and so (10) is bounded by 2n. Then3

∑
e∈Tk

1

r|e|

(∫
|E|=|e|

∥∥1Ie,E
∥∥
L1 dE

)
≤

∞∑
n=0

2n

rn
< ∞

since r > 2.4

5

Combining Proposition 3.10 with Lemma 3.9 show that each interval ful-6

filling the conditions of Proposition 1.4 has a simple decomposition; the bound7

on ∥dn∥L1 follows by bounds obtained near the end of the proof of Proposition8

3.10.9
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