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WITH SOLUTIONS

Problem 1. What is the sum of the squares of the digits of the square of the sum of
the digits of 2023?

(A) 10 (B) 31 (C) 61 (D) 64 (E)♡ 97

Answer. 97

Solution. Following the instructions, we get successively 2 + 0 + 2 + 3 = 7, 72 = 49,
42 + 92 = 97.

Problem 2. Let C be a circle of radius 5, centered at (5, 3). The parabola of equation
y = f(x) shares both its x and y intercepts with C. What is f(2)?

(A)♡ −7
3

(B) −5
3

(C) −2 (D) −2
3

(E) −2
3

Answer. −7
3

Solution.

Since the radius is 5 and the center’s abscissa is 5 as well, the y-axis axis is tangent
to the circle at (0, 3); this is our y-intercept. As the center lies 3 units above the x
axis and since the radius is 5, by Pythagoras’ theorem we conclude that the circle



intersects that axis at x = 5± 4, i.e. at the points (1, 0) and (9, 0).
Now that we know the roots of the parabola, we can deduce that it is of the form
y(x) = k(x − 1)(x − 9). The y-intercept, 3, then settles the value of k so that
y(x) = 1

3
(x− 1)(x− 9) whence y(2) = −7

3

Problem 3. During the Middle Ages, Cistercian monks developed an interesting
additive numeration system where each number from 1 to 9999 could be expressed as
a single symbol. Their convention is illustrated in the table below:

For example, 2023 would be represented by , 1453 by and 732 by . If X is
the largest multiple of 4 whose Cistercian notation is invariant under a 180o rotation,
what is X?

(A) 6996 (B) 8080 (C) 8008 (D)♡ 8888 (E) 9696

Answer. 8888

Solution. Rotating a cistercian symbol by 180o permutes the units with the thou-
sands and the tens with the hundreds. Such a number is thus invariant under rotation
if and only if it is of the form abba where a and b represent digits. A number is di-
visible by 4 if and only if its last two digits are divisible by 4. Given the palindromic
nature of the number we are looking for, we seek for the multiple of four with the
largest possible unit digit and then with the largest possible ten digit. This number
is clearly 88 as multiples of 4 are even, hence X = 8888.

Problem 4. Amongst four friends, Alice, Bob, Charly and Donna, each person either
always lies or always tell the truth. One evening, they make the following statements:

Alice - Bob is a liar!
Charly - Alice is a liar.



Donna - Alice and Charly are both liars. Bob is a liar!

Who are the liars?

(A) Alice & Bob (B) Alice & Charlie (C)♡ Alice & Donna
(D) Bob & Donna (E) Charlie & Donna

Answer. Alice and Donna

Solution. Assume Donna says the truth. Then, Alice is a liar (according to Donna’s
statement) so Bob must tell the truth (since Alice is liar). However, this contradicts
Donna’s statement. Therefore, our assumption is wrong and Donna is a liar. Hence-
fort, Bob tells the truth (since Donna is liar) and so Alice is also liar. Lastly, Charlie
tells the truth as Alice is liar. As a consequence, Alice and Donna are the two liars.

Problem 5. Alice and Bob are bored and decide to play a game. The players
alternate taking turns and add 1 or 2 (to their liking) to the number that the previous
player has given. The first player who says the number ”n” wins. If both players play
with perfect strategy, which of the following n ensures that ”Alice wins the game?

(A) 26 (B) 30 (C)♡ 34 (D) 38 (E) 42

Answer. 34

Solution. If Alice starts with the number “1”, it is guaranteed that Alice can say
“4” in her second turn (notice that it does not matter whether Bob says “2” or “3”).
If Alice says “4” in the second turn, it is guaranteed that she can say “7” in her third
turn. Therefore, Alice can go with the following numbers “1, 4, 7, 10, 13, . . .” all have
remainder 1 on dividing by 3. Hence, if n is 34, Alice is guaranteed to win the game.

Problem 6. An ant starts on one corner of a cube, and randomly chooses an edge of
the cube to walk across. After reaching the next corner, the ant once again chooses
one of the three available edges to walk across. If the ant continues in this fashion,
after walking across edges of the cube 6 times, what is the probability of the ant
ending on the vertex where it started?

(A)♡ 61
243

(B) 17
81

(C) 1
8

(D) 17
64

(E) 41
162

Answer. 61
243

Solution. For convenience, we will consider the vertices of our cube to be the points
of the form (x, y, z) where x, y, z ∈ {0, 1}. We also assume that the ant starts at the
origin. Let f(x, y, z) = x+ y+ z, and note that this is the length of the shortest path
from (0, 0, 0) to (x, y, z) along edges of the cube. Instead of keeping track of exactly
where the ant goes on the cube, we will keep track of the value of f(x, y, z). Let An

be the event that after n steps, the ant lands at a point where f(x, y, z) = 0, i.e. the



ant lands on the origin. Similarly, let Bn, Cn, Dn be the events that the ant lands on
a point where f(x, y, z) is equal to 1, 2, 3 respectively.

When the ant is at the origin, it is guaranteed to travel to a point where f(x, y, z) =
1. When it is at a point where f(x, y, z) = 1, it has a 1

3
chance of traveling back to

the origin, and a 2
3
chance of going to a point where f(x, y, z) = 2. When it is at a

point where f(x, y, z) = 2, it has a 2
3
chance of going to a point where f(x, y, z) = 1,

and a 1
3
chance of going to a point where f(x, y, z) = 3, i.e. the point (1, 1, 1). When

the ant is at the point (1, 1, 1), it is guaranteed to go to a point where f(x, y, z) = 2.
Thus, we have the recursion An+1 = 1

3
Bn, Bn+1 = An +

2
3
Cn, Cn+1 = 2

3
Bn +Dn,

and Dn+1 = 1
3
Cn. Moreover, we have the initial state (A0, B0, C0, D0) = (1, 0, 0, 0).

Therefore, we can find the sequence (An, Bn, Cn, Dn) for n = 0, ..., 5:

(1, 0, 0, 0), (0, 1, 0, 0), (
1

3
, 0,

2

3
, 0), (0,

7

9
, 0,

2

9
), (

7

27
, 0,

20

27
, 0), (0,

61

81
, 0,

20

81
).

Since B5 =
61
81
, we conclude that A6 =

61
243

.

Problem 7. Starting with a regular 2023-gon, suppose that you choose some number
of pairs of vertices and draw the diagonals between them, ensuring that the diagonals
do not intersect. What is the least number of diagonals you can draw so that it is
not possible to include any additional non-intersecting diagonals?

(A) 1612 (B) 1774 (C) 1922 (D) 1993 (E)♡ 2020

Answer. 2020

Solution. It is clear that one can draw 2020 diagonals all starting from the same
vertex, and after that it is impossible to add any more non-intersecting diagonals.
The question is, can we achieve this with less than 2020 diagonals?
We can see that the answer is no by induction. We claim that in fact no matter
how one chooses to draw the diagonals in an n-gon, the process will terminate after
drawing n−3 diagonals. This is clearly true for n = 3, 4. Suppose that for all k-gons,
k < n, the process of drawing non-intersecting diagonals always terminates after k−3
diagonals have been drawn. Now suppose that we draw one diagonal in an n gon,
dividing it into a k-gon and an (n− k+2)-gon. These sub-polygons can accept k− 3
diagonals and n−k−1 diagonals respectively, for a total of n−4 diagonals. Counting
the one diagonal we drew to start, we see the process always terminates after drawing
n− 3 diagonals, and the claim is proved by induction.

Problem 8. Let x,y and z be real numbers and assume that xyz
y+z

= −1, xyz
x+z

= 1 and
xyz
x+y

= 2; which of the following could be the value of xyz?

(A)♡ − 8√
5

(B) − 4
5
√
3

(C) − 1√
2

(D) 5
2
√
7

(E) 3√
2



Answer. − 8√
5
1

Solution. Taking the reciprocals of the above we can write x+y
xyz

= 1
2
, y+z

xyz
= −1 and

x+z
xyz

= 1.

Then, x+y
xyz

+ y+z
xyz

+ x+z
xyz

= 2(x+y+z)
xyz

= 1
2
which implies that x+y+z

xyz
= 1

4
. Therefore x

xyz
=

1
4
+ 1 = 5

4
, y
xyz

= 1
4
− 1 = −3

4
, z
xyz

= 1
4
− 1

2
= −1

4
and thus xyz

(xyz)3
= 15

64
=⇒ 1

(xyz)2
= 15

64

We can conclude that xyz = ± 8√
5
.

Problem 9. On planet Zglub, everything is made out of 4 fundamental particles:
the archon

⋂
, the dawgon ∆, the bullon

⊗
and the touchdon

⊔
. These particles

are very unstable and after each collision the total number of particles decreases by
1 according to the following rules :

1. An archon always gets absorbed :
⋂

+X → X, where X is any of the four
particles.

2. Two identical particles transform into an archon : X +X →
⋂
.

3. A touchdon transforms a dawgon into a bullon, and transforms a bullon into a
dawgon : ∆ +

⊔
→

⊗
and

⊗
+
⊔

→ ∆.

4. A dawgon and a bullon give a touchdon ∆ +
⊗

→
⊔
.

Inside his lab, a scientist has created a small scale model of the planet by putting
together 441 archons (

⋂
), 673 dawgons (∆), 431 bullons (

⊗
) and 478 touchdons

(
⊔
). After 2022 collisions, only one particle survives the experiment. What is that

terminal particle?

(A)
⊗

(B) ∆ (C)
⋂

(D)♡
⊔

Answer.
⊔

Solution. We can think of particle collision as a binary operation on the set of
particles, {

⋂
,∆,

⊗
,
⊔
}. The description of the problem suggests that this operation

is commutative and associative. This can be easily checked by writing the Cayley
table of the (*) operation representing particle collision:

+
⋂

∆
⊗ ⊔⋂ ⋂

∆
⊗ ⊔

∆ ∆
⋂ ⊔ ⊗⊗ ⊗ ⊔ ⋂

∆⊔ ⊔ ⊗
∆

⋂
1The problem was removed as the initial answer was erroneously recorded as − 8

3
√
5
.



These properties mean that there many ways to compute the final particle.

This being said, the simplest is to realize that rule (2) reduces any initial number
of a given particle, X + · · ·+X, to X if they are in odd number and to

⋂
if they are

in even number.
by putting together 441 archons (

⋂
), 673 dawgons (∆), 431 bullons (

⊗
) and 478

touchdons (
⊔
).

Therefore, the initial configuration of 441
⋂
, 673∆, 431

⊗
and 478

⊔
reduces to

a single particle of each type. Now
⋂
+∆ →

⊗
and

⊗
+
⊗

→
⊔

and, finally,⊔
+
⊔

→
⊔
. In other words, the last two particles eventually collide to form a touch-

don !
⊔
!

Remark: the particles behave like Z/2Z × Z/2Z after performing the following
identification:

⋂
= (0, 0), and any bijection between the remaining three particles

and (0, 1), (1, 1) and (1, 0).

Problem 10. Moody the donkey is very stubborn. He only moves eastwards (E) or
northwards (N). Every morning, he leaves from his stable and moves 1/2 mile either
(E) or (N), then he reassesses the situation and walks 1/4 mile either (E) or (N), at
that point, he decides to move 1/8th of mile either (E) or (N), etc. That day, Moody
decides to alternate, he goes first (E), then (N), then (E), etc. How far from home
will he end up?

(A)
√
2
3

(B)
√
3
2

(C)♡
√
5
3

(D) 1 (E) 2

Answer.
√
5
3

Solution. Moody’s overall horizontal displacement is 1
2
+ 1

8
+ 1

32
+ · · · =

1
2

1− 1
4

= 2
3
.

His total vertical displacement is half of that, i.e. 1
4
+ 1

16
+ · · · = 1

3
. Using Pythagoras,

we get a total displacement of
√(

2
3

)2
+
(
1
3

)2
=

√
5

3
.

Problem 11. Today, Moody the donkey (see Problem 10) does not feel adventurous.
He picks a path so as to stay as close as possible to home. How far from home (in
miles) will he land?

(A)♡
√
2
2

(B)
√
3
3

(C)
√
2
3

(D)
√
3
2

(E)
√
5
3

Answer.
√
2
2



Solution. Arguing as above, the total horizontal displacement h and the total vertical
displacement v satisfy v + h = 1 = 1

2
+ 1

4
+ · · · . The distance from home is thus√

v2 + (1− v)2 =
√
2v2 − 2v + 1 which is minimal at the vertex of the radicand, i.e.

when v = −−2
4

= 1
2
. In that case, we get a distance of

√
2
2
.

Problem 12. . Arrange the integers in a pyramidal form as follows:

1
2 3
4 5 6

7 8 9 10
11 12 13 14 15

The list goes on with every time n entries on row n. What is the sum of the
entries on the 10th row?

(A) 300 (B) 369 (C)♡ 505 (D) 561 (E) 565

Answer. 505

Solution. There are n entries in row n, hence before row n, there are 1+. . .+(n−1) =
n(n−1)

2
entries. This means that row 10 begins with 10·9

2
+ 1 = 46. The last entry of

that row is 55; we have a total of 10
2
× (46 + 55) = 505.

Problem 13. Consider the figure below representing a configuration of two chords
parallel to a same diameter and four circles, pairwise tangent to the diagonal and one
of the two chords. If the length of the chords are as above, what is the area of the
shaded region?

20

12

(A) 34π (B) 36π (C) 64π (D)♡ 68π (E) 100π

Answer. 68π

Solution.

• Let us focus on the top right quadrant of the circle.



10

2r R

From Pythagoras’ theorem follows that R2 = 100 + 4r2 where R denotes the
radius of the outside circle and r the radius of the inner one. The shaded area
in that quadrant is thus π

4
(100 + 4r2) − πr2 = 25π. The area is the top left

quadrant is of course identical and, mutatis mutandis, we get an area of 9π for
each of the bottom two quadrants. All in all, the shaded area is thus 68π.

• An alternative solution is to first focus on the top half of the circle. From the
question, the answer seems to be independent of the outer radius and inner
radius (as those could vary) and only depend on the chord length. One could
thus imagine a degenerate (extreme) case where the inner circles shrink to a
point and the chord becomes a diameter. We then are reduced to compute the
half area of a disk of diameter 20, i.e. 50π. Similary, the lower half of the
picture yields an area of 18π.

Problem 14. Evaluate the sum
4∑

n=−3

log(n+
√
n2 + 9), i.e.

log(−3 +
√
32 + 9) + log(−2 +

√
22 + 9) + · · ·+ log(4 +

√
42 + 9).

(A) 0 (B) 2 log(3) (C) 3 log(3) (D) 8 log(3) (E)♡ 9 log(3)

Answer. 9 log(3)

Solution. It useful to pair elements in the sum with opposite indices as

log(−n+
√

(−n)2 + 9) + log(n+
√
n2 + 9) = log(−n2 + (

√
n2 + 9)2) = log(9).

Beware that the n = 0 term is simply log(3). Finally, the last term, n = 4 simplifies
to log(4+

√
42 + 9) = log(9). All in all, the sum adds up to 3 log(9)+log(9)+log(3) =

9 log(3).

Problem 15. The distinct real numbers a, b and c all satisfy the same equality :

a = 3
√
37a+ 84, b =

3
√
37b+ 84, c = 3

√
37c+ 84.

What is the sum of the digits of their product, abc?



(A) 3 (B)♡ 12 (C) 5 (D) 6 (E) 7

Answer. 12

Solution. The equations above simply mean that a, b and c are the roots of the
polynomial x3 − 37x− 84. The constant coefficient in a polynomial is the product of
the negative of its roots; this can be seen by expanding (x− a1) · · · (x− an). We can
thus conclude conclude that abc = 84 and the sum of the digits is thus 12.

Problem 16. What is the diameter of the semicircle below given that its endpoints
can be joined by three connected chords whose lengths are 6, 6 and 1, as shown?

6

6

1
?

(A) 6 (B) 7 (C) 8 (D)♡ 9 (E) 10

Answer. 9

Solution.
Option 1 (Similar triangles)
For what follows below, it is useful to label some points, so that we can name

some of the relevant segments, angles, and polygons. Let O be the center of the
semicircle, let A,B,C,D be the points on the circumference, starting from the left
going in clockwise order. Let E be the intersection of BO and AC.

6

6

1

OA

B

C

D

E
1
2

r − 1
2

r r

Now let r be the radius of the semicircle.
First, observe that OABC is a kite with AB = BC = 6, OA = AC = r. This

implies that the diagonals are perpendicular, i.e., AC ⊥ BO, and so ∠AEO =
∠AEB = 90◦. Also, △ACD is a right triangle, as it is inscribed in a semicircle whose
diameter is its hypotenuse. We then have that △AEO ∼ △ACD. Since AO = r and
AD = 2r, the ratio of similarity is 2; we then must have that EO = 1/2. In turn,
BE = r − 1/2.



Observe also that both△AEO and△AEB are right triangles. Using the Pythagorean
theorem, we can now compute AE in two different ways: we have that

AE2 = r2 −
(
1

2

)2

= 62 −
(
r − 1

2

)2

.

After simplifying and expanding, we have

r2 − 1

4
= 36−

(
r2 − r +

1

4

)
2r2 − r − 36 = 0

(2r − 9)(r + 4) = 0.

Since r > 0, we must have r = 9/2, and so the diameter is 2r = 9.

Option 2 (Some trigonometry)
As in Solution 1, denote by r the radius of the semicircle; the quantity we are

looking for is then 2r.
Let θ be the central angle of each arc subtended by a chord of length 6, so that

the angle of the arc subtended by the chord of length 1 is π − 2θ.

6

6

1

θ
θ

π − 2θ

By the cosine law, we have:

62 = 2r2 − 2r2 cos(θ) = 2r2(1− cos(θ))

12 = 2r2 − 2r2 cos(π − 2θ) = 2r2(1 + cos(2θ))

Divide the second equation by the first to get:

1

36
=

1 + cos(2θ)

1− cos θ
1

36
=

2 cos2(θ)

1− cos(θ)

72 cos2 θ + cos θ − 1 = 0

(9 cos θ − 1)(8 cos θ + 1) = 0

Since 0 < θ < π/2, we must have cos θ = 1/9. Substituting this back into the first
equation we have 36 = 2r2(1 − 1/9), which yields r = 9/2 since r > 0. Hence the
diameter of the semicircle is 9.



Option 3 (Ptolemy’s theorem, straightforward)
The following solution uses a result in Euclidean geometry known as Ptolemy’s

theorem:
Theorem (Ptolemy) Let ABCD be a cyclic quadrilateral, i.e., a quadrilateral

whose vertices lie on a circle. We have AB · CD +BC · AD = AC ·BD.
That is, the product of the diagonals of a cyclic quadrilateral is equal to the sum

of the pairwise products of its opposite sides.
Note that the chords and the diameter give us a cyclic quadrilateral with sides

1, 6, 6, d, where d is the diameter of the semicircle. Since every triangle inscribed
in a semicircle is a right triangle, each diagonal is the leg of a right triangle whose
hypotenuse is the diameter, and whose other leg is another side of the quadrilateral.
By the Pythagorean theorem, we have that the two diagonals are

√
d2 − 36 and√

d2 − 1.

6

6

1

d

Now that we have the lengths of all sides of the cyclic quadrilateral as well as its
diagonals, we can use Ptolemy’s theorem. We get

6 · 1 + 6 · d =
√
d2 − 36 ·

√
d2 − 1

(6 + 6d)2 = (d2 − 36)(d2 − 1)

36d2 + 72d+ 36 = d4 − 37d2 + 36

d4 − 73d2 − 72d = 0

d(d− 9)(d+ 1)(d+ 8) = 0.

Since d > 0, we must have d = 9.

Option 4 (Ptolemy with some cleverness)
The above calculation with Ptolemy’s theorem can be simplified with some clev-

erness. Note that we can cut the semicircle into three arcs, and rearrange them, as
follows:

6

6

1

d d

⇒ 6

1

6



In effect, the original quadrilateral has also been rearranged. Now, for this new
quadrilateral, each diagonal has length

√
d2 − 36. Ptolemy’s theorem then gives us

6 · 6 + 1 · d = (
√
d2 − 36)2

d2 − d− 72 = 0

(d− 9)(d+ 8) = 0.

As before, since d > 0, we must have d = 9.

Problem 17. Let f be a real function satisfying the identity

f(x− 2023f(y)) = 1− x− y

for all real numbers x and y. What is f(−1)?

(A) 2025
2024

(B) 2024
2023

(C) 2023
2022

(D) −2023
2022

(E) 1 (F)♡ There is no such
function

Answer. There is no such function.2

Solution. Let x = 2023f(y) + z. The above equation becomes

f(z) = 1− z − 2023f(y)− y

or
f(z) + z = 1− y − 2023f(y).

Since the equality holds for all z, y there is a constant C such that f(z) = z − C
and f(y) = 1−y−C

2023
however those identities cannot hold simultaneously as e.g. they

represent lines with different slopes.

Problem 18. In a right triangle with sides of length a, b and c, we can compute the
ratio

ρ =
a+ b+ c

c

where c is the longest side. Which of these numbers is a possible value for ρ?

(A) 1.5 (B) 1.9 (C)♡ 2.3 (D) 2.8 (E) 3.2

Answer. 2.3

Solution.
Option 1

Firstly, c < a+ b =⇒ 2c < a+ b+ c =⇒ 2 <
a+ b+ c

c
.

Moreover, (a − b)2 ≥ 0 =⇒ a2 + b2 ≥ 2ab =⇒ 2(a2 + b2) ≥ (a + b)2 =⇒
√
2c ≥

2The problem was removed as the initial answer was erroneously recorded as 2025
2024 .



a+ b =⇒
√
2c+ c ≥ a+ b+ c =⇒

√
2 + 1 ≥ a+ b+ c

c
. Therefore,

1 +
√
2 ≥ a+ b+ c

c
≥ 2 As

√
2 ≈ 1.41 we can conclude.

Option 2
The hypotenuse of a right triangle is relatively maximal when the two other sides

have the same length (See Problem 11) and is relatively minimal when the triangle
is degenerate, i.e. when one of the other sides is 0. In the former situation, ρ =
a+a+a

√
2

a
√
2

= 1 +
√
2 and in the latter case ρ = a+0+a

a
= 2. In the other scenarios, ρ

varies between those bounds. We conclude in the same way.

Problem 19. Let z = −1
2
+ i

√
3
2

where i =
√
−1. Evaluate the following sum:

30∑
a,b,c=1

za
2b+bc2−169b.

(A)♡ 12000 (B) 300− 600i (C) 9000i (D) 9000 (E) 6000 + 3000i

Answer. x

Solution. The important property of the complex number z = −1
2
+ i

√
3
2

is that
z3 = 1, and that z + z2 + z3 = 0. Note that for any integer x which is not divisible
by 3, y = zx has the same property. If x is divisible by 3, on the other hand,
y + y2 + y3 = 1 + 1 + 1 = 3. One can extend this idea to a sum from 1 to 30,

30∑
k=1

zkx =

{
0 3 ̸ |x
30 3|x

We can take advantage of this by summing first in b, since the exponent can be
factored as b(a2 + c2 − 169). We see that

30∑
b=1

zb(a
2+c2−169) =

{
0 3 ̸ |(a2 + c2 − 1)
30 3|(a2 + c2 − 1)

Therefore, if there are N pairs (a, b) with a, b ∈ {1, ..., 30} satisfying a2 + c2 ≡
1 (mod 3), we find that S = 30N . To find N , note that a2 + c2 ≡ 1 (mod 3) if and
only if exactly one of a and b is divisible by 3. Thus, N = 2 · 10 · 20 = 400, and so
S = 12000.

Problem 20. . Let x, y be positive integers less than 100. How many (x, y) pairs
satisfies the following equation?

2023x2 = 2025y − 4



(A)♡ 0 (B) 1 (C) 4 (D) 100 (E) 400

Answer. 0

Solution. The RHS has the remainder 1 on dividing by 5. Moreover, any integer
has remainder 0, 1, 2, 3, 4 on dividing by 5 so any integer square has remainder 0 =
02, 1 = 12 = 42), or 4 = 22 = 32) after division by 5. Then, any integer square times
2023 will have remainder 0 = 0 × 3, 3 = 1 × 3, or 2 = 4 × 3. Therefore there is no
integer pair that satisfies the equation as LHS has remainder 0, 2, or 3 while the RHS
has remainder 1 after division by 5.

Problem 21. Consider the list of all integers n,m > 0 such that

1! + 2! + 3! + · · ·+m! = n2.

What is the product of all the elements in that list?
(A) 1 (B)♡ 9 (C) 135 (D) 225 (E) 2025

Answer. 9

Solution. When working modulo 5, n2 can only take 3 distinct values : 02 = 0,
12 = 42 = 1 and 22 = 32 = 4. When m ≥ 5, the left hand side of the equation reduces
to 1! + 2! + 3! + 4! = 33 = 3 modulo 5 and hence can never be a perfect square. For
small values of m, one readily checks that the only possible answers are 1! = 12 and
1! + 2! + 3! = 32. In other words, the only solutions are n = m = 1 and n = m = 3
whose product is 1× 1× 3× 3 = 9.

Problem 22. . How many pairs of integers (m,n), where m,n ∈ 1, 2, 3, . . . are such
that n3 +m3 divides n2 + 6nm+m2?

(A) 1 (B) 2 (C) 3 (D) 4 (E)♡ 5

Answer. 5

Solution. Note that if a, b are positive integers such that a divides b, then a ≤ b.
Thus, we have

m3 + n3 ≤ m2 + 6mn+ n2

m3 + n3 −m2 +mn− n2 ≤ 7mn

(m+ n− 1)(m2 −mn+ n2) ≤ 7mn

Now, note that (m−n)2 ≥ 0, and adding mn to both sides yields m2−mn+n2 ≥
mn for all m,n; thus, we have (m + n − 1)mn ≤ 7mn and so m + n − 1 ≤ 7, i.e.
m+ n ≤ 8.

Assume for now, without loss of generality, that m ≤ n; we will then have n ≤ 4.



• For n = 1, we can only have m = 1, which indeed works.

• For n = 2, we have m = 1 or m = 2. We have that m = 2 works.

• For n = 3, we have that m = 1 works.

• Finally, for n = 4, we have that m = 4 works.

Accounting now for the pairs with m > n, we get a total of 5 solutions.

Problem 23. The continuous piecewise linear function f is depicted below. The
graph has 3 corners. How many corners does (f ◦ f)(x) = f(f(x)) have?

0-5 5

-5

5

x

y

(A) 3 (B) 4 (C) 5 (D) 6 (E)♡ 7

Answer. 7

Solution. The singular points of f lie above −1, 0 and 2. One can see from the
graph that the preimage of −1 has two points : f−1(−1) = {3, 5}; and that f−1(0) =
{−2, 0, 4} and f−1(2) = {2}. Above these 6 values we will have corners. To these
points, we must also add the point above −1 which remains angular as around 1 =
f(−1), f is linear.

Problem 24. . Consider the set S = {1, 1
2
, 1
3
, 1
4
, . . .}. We want to cover S with

5 closed intervals of equal length. What is the minimal length of each individual
interval?

(A)♡ 1
10

(B) 3
25

(C) 1
8

(D) 1
6

(E) 1
5

Answer. 1
10

Solution. The minimal length is 1
10
. Let’s split S into the following disjoint sets:

S1 = {1}, S2 = {1
2
}, S3 = {1

3
, 1
4
}, S4 = {1

5
, 1
6
, 1
7
, 1
8
, 1
9
} and S5 = { 1

10
, 1
11
, . . .}. These

sets can all be covered by intervals of length 1
10

– this is obvious for S1, S2 and S5

and for S3 (resp. S4), note that 1
3
− 1

4
≤ 1

10
(resp. 1

5
− 1

9
≤ 1

10
).

Had we chosen an interval with smaller length ℓ < 1
10
, then we would have not been

able to cover all elements of S. Clearly, S1 and S2 would still need two intervals to be



covered. S3 could still be covered but we could not include 1
5
as 1

3
− 1

5
> 1

10
. Keeping

S5 to the right (in order to include the tail of S), we must place 1
5
and 1

10
in S4, but

1
5
− 1

10
= 1

10
> ℓ, a contradiction.

Problem 25. In the equation below, a, b, c, and d are base-10 digits. Moreover,
assume that neither a nor c equals 0. What is cd if

abcd = (ab)2 + (cd)2?

Here, abcd is a 4-digit number, and ab and cd are 2-digit numbers.

(A) 30 (B) 31 (C) 32 (D)♡ 33 (E) 34

Answer. 33

Solution.
Option 1 Let m := ab, n := cd. Then we have

100m+ n = m2 + n2

m2 − 100m+ n2 − n = 0

4m2 − 400m+ 4n2 − 4n = 0

(2m− 100)2 + (2n− 1)2 = 10001.

Let x := 2m−100, y := 2n−1. We know that x is even and y is odd; we want to find
ordered pairs of integers (x, y) with x even, y odd such that x2 + y2 = 10001. Since
there are only finitely many possible values of x, y, we may use trial and error. We
have the following solutions in (x, y): (±100,±1), (±76,±65). As it turns out, only
the solutions (±76, 65) give allowable values of m,n. We have, if (x, y) = (−76, 65),
(m,n) = (12, 33); if (x, y) = (76, 65), we have (m,n) = (88, 33). In both cases,
n = 33.

Option 2 Using complex numbers (specifically, the Gaussian integers) and some
factorization tricks, there is another way to find the above solutions that requires a
bit less guesswork.

Note that 10001 = 73 · 137. To see this, we test squares just above 10001 > 1002

and see which ones differ from 10001 by a perfect square. We then use the difference
of squares factorization to factor. We have:

1012 − 10001 = 200 not a square

1022 − 10001 = 403 not a square

1032 − 10001 = 608 not a square

1042 − 10001 = 815 not a square

1052 − 10001 = 1024 = 322

From the above, we have 10001 = 1052 − 322 = (105− 32)(105 + 32) = 73 · 137.



This factorization turns out to be useful. Consider the norm N : C → R≥0 given
by N(a+ bi) = a2 + b2 for all real numbers a, b. It is not hard to show that the norm
is multiplicative, i.e., if α, β ∈ C, we have N(αβ) = N(α)N(β). This means that if
there exist α, β with N(α) = 73 and N(β) = 137, then N(αβ) = 73 · 137 = 10001.
Moreover, if we write α = a1 + b1i, β = a2 + b2i with a1, a2, b1, b2 ∈ Z, then we can
write αβ = a3 + b3i where a3, b3 ∈ Z as well. This gives us a way of finding integers
x = a3, y = b3 satisfying x2 + y2 = 10001.

In fact, we can say more. The Gaussian integers Z[i] := {a + bi : a, b ∈ Z}, i.e.,
the set of all numbers of the form a+ bi, where a and b are integers, satisfy a unique
factorization property just like that of the usual integers. That is, every Gaussian
integer α ̸= 0 has a prime factorization

α = µπr1
1 . . . πrk

k

for some unit µ, some primes π1, . . . , πk, and some positive (usual) integers r1, . . . , rk.
In this setting, the primes are those of the form a+bi wherein a2+b2 = p for some

prime p, as well as the usual rational primes p ≡ 3 (mod 4), up to multiplication by
some unit. The units here are the powers of i, i.e., ±1 and ±i.

This prime factorization is unique, up to reordering and multiplication by units.
That is, maybe we have two ways to write α as a product of units and primes. The
total number of primes, up to multiplicity is always the same; moreover, the actual
list of primes should be the same, except maybe we have πj in the first list and µπj

in the second list for some unit µ.
One useful, if nonstandard way to formulate the above: there is a unique, up to

order, way to write
α = µαr1

1 . . . αrk
k

where the primes π1, . . . , πk are distinct, such that if πj = aj + bji we have aj > 0,
bj ≥ 0 for all 1 ≤ j ≤ k.

The above unique factorization property tells us that, in fact, if N(a+bi) = 10001,
we must be able to write a + bi = π1π2 for some primes π1 = a1 + b1i, π2 = a2 + b2i
with N(π1) = 73 and N(π2) = 137. The only way to write 73 as a sum of two squares,
up to order and signs, is 73 = 82 + 32; similarly, we only have 137 = 112 + 42.

Moreover, while finding a way to write an integer n = a2 + b2 as a sum of two
squares is equivalent to finding a Gaussian integer α with N(α) = n, we have that, for
any unit µ, α and µα do not give a fundamentally different pair a, b. This is because
if α = a + bi, we have iα = −b + ai, and every unit is a power of i, so we always
get the same a, b up to order and signs. It thus suffices to test combinations of π1, π2

with a1, a2 > 0 and b1, b2 ≥ 0. We have

(3 + 8i)(4 + 11i) = −76 + 65i

(3 + 8i)(11 + 4i) = 1 + 100i

(8 + 3i)(4 + 11i) = −1 + 100i

(8 + 3i)(11 + 4i) = 76 + 65i

This tells us that the only ways to write 10001 as the sum of two squares are
10001 = 1002 + 12 = 762 + 652, up to sign and order.



⋄ ⋄ ⋄

Authors. Written and edited by Paco Adajar, Jimmy Dillies, Mo Hendon, Gary
Iliev, Tekin Karadag, Brian McDonald, Paul Pollack and Casia Siegel.


