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WITH SOLUTIONS

Problem 1 (Party). Mo has invited 2023 guests for his retirement party.
His way of the sharing the cake is quite eccentric: the first guest gets 1

2023
rd

of the cake, the second guest gets 2
2023

rd of what is left, the third guest gets
3

2023
rd of what is left, ..., and the last guest gets 2023

2023
rd -that is everything-

of what is left.
Which guest receives the largest piece?

Answer. 45

Solution. Let pn be the size of the piece of the n-th guest. Instead of
looking at the problem globally, we will compare successive terms to see
when we reach an apex. We have pn = n

2023

(
1−

∑n−1
i=1 pi

)
. To make our life

easy, and to be able to compare the sums appearing on the right hand side,
let us compute

2023

(
pn+1

n+ 1
− pn

n

)
=

(
1−

n∑
i=1

pi

)
−

(
1−

n−1∑
i=1

pi

)
= −pn.

We can now isolate pn+1

pn
:

pn+1

pn
= (n+ 1)

(
1

n
− 1

2023

)
.



The sequence decreases when pn+1

pn
< 1. This constraint is a quadratic in-

equality :
n2 + n− 2023 > 0

which holds when n ≥ 45. I.e. p46 < p45 and the sequence goes decrescendo
from there on. The maximal portion is thus the one of guest number 45.



Problem 2 (Alea iacta est). Let ∆ represent the difference between the
largest possible sum and the smallest possible sum of all visible faces on a
dice configuration. Imagine a construction like the one below but where the
number of ’holes’ is not 5 but some larger number g. If ∆ = 2032 for that
construction, what is the number of holes (g)?

Answer. 201

Solution. Note that ∆ is additive: the total value is the sum of the ∆ for
each dice. The contribution to ∆ of a dice depends on its position.

(i) If a dice is attached to two other dice along opposite faces (we’ll
call those linear dice), the sum of visible sides is 14 independently of their
orientation. Hence ∆ = 0 for each of those dice. (ii) If a dice is located on a
corner (there are 4 of those), two adjacent sides are covered. The maximal
amount covered is 11 = 6 + 5 and the minimal amount covered is 1 + 2 = 3.
Therefore ∆ for those dice is (21 − 3) − (21 − 11) = 8. (iii) Finally, dice
located at a T junction have two opposite sides covered (whose pips add up
to 7) and an extra side. The amount hidden varies thus between 8 = 7 + 1
and 13 = 7 + 6. For those dice, ∆ is thus equal (21− 8)− (21− 13) = 5.
If we let L be the number of linear dice, C the number of corner dice and T
the number of T-junction dice, we can write

∆ = 8C + 5T.



Note that there are four corners C = 4 and in our case ∆ = 2032 so that
5T = 2000 and T = 400. Between any two adjacent holes, there are 2
junction dice. Hence g − 1 = T

2
and here g = 201.



Problem 3 (This problem stinks). The septic number system consists of the
positive integers of the form 7n+1: that is, 1, 8, 15, 22, etc. A septic prime
is a septic number larger than 1 that cannot be written as a product of two
smaller septic numbers. Every septic number larger than 1 can be written as
a product of septic primes, but this factorization is not always unique. For
example, 36 × 169 = 78 × 78, and all of 36, 169, and 78 are septic primes.
In this instance our two factorizations have length 2, where the length is the
number of septic primes involved in the factorization (with repeated primes
counted multiply).

For each septic integer n, let

E(n) =
largest length of a factorization of n into septic primes

smallest length of such a factorization
.

Find the largest possible value of E(n).

Answer. 3

Solution. We first argue that a value at least 3 is possible. Let A = 36 and
B = 56. By Fermat’s little theorem, A ≡ B ≡ 1 (mod 7), and so A and B
are septic numbers. We claim they are both septic primes. Any nontrivial
factorization of A in the positive integers has the form 3e1 · 3e2 , with e1, e2
positive integers adding to 6. Since 3e is not 1 mod 7 for any positive integer
e < 6, none of those factorizations are valid septically. Thus, A is a septic
prime. A parallel argument shows B is a septic prime. Now notice that

A ·B = 15 · 15 · 15 · 15 · 15 · 15

and that 15 is a septic prime (since its nontrivial factors, 3 and 5, are not 1
mod 7). Thus, AB has a factorization as a product of 2 septic primes and
as a product of 6 septic primes, and so E(AB) ≥ 6/2 = 3.

Next we prove that no value larger than 3 is possible. It is helpful to
separate out from the main proof the following key observation.

Lemma 1. Every septic prime is a product of at most six ordinary primes.

Proof. Let P be a septic prime and suppose for a contradiction that P =
p1 · · · pm, where each pi is an ordinary prime and m > 6.



Consider the list of m−1 numbers p1, p1p2, p1p2p3, . . . , p1 · · · pm−1. Since
P is an integer multiple of each of number on this list, and P is not a multiple
of 7, no term in the list is congruent to 0 mod 7. Furthermore, no term is
congruent to 1 mod 7. To see this, suppose some number R on this list is
congruent to 1 mod 7, and let S = P/R. Since P = SR and both P and
R are congruent to 1 mod 7, it must be that S ≡ 1 (mod 7) also. But then
R, S are septic numbers larger than 1 with P = RS, contradicting that P is
a septic prime. Putting these observations together, we conclude that each
term on our list belongs to one of the 5 residue classes 2, 3, 4, 5, 6 (mod 7).

Since the list has length m−1 > 6−1 = 5, two terms must coincide mod
7; say p1 · · · pk ≡ p1 · · · pℓ (mod 7), where 1 ≤ k < ℓ ≤ m − 1. Canceling,
pk+1 · · · pℓ ≡ 1 (mod 7). (We use here that 7 is prime, so that cancellation is
valid in the integers modulo 7.) Now taking R = pk+1 · · · pℓ and S = P/R,
we get the same contradiction as before: R and S are septic numbers larger
than 1 multiplying to P .

Now n be a septic integer larger than 1 and suppose we have two factor-
izations of n into septic primes pi and qj, say

n = p1 · · · pk = q1 · · · qℓ, (*)

where k ≥ ℓ. We must show that k/ℓ ≤ 3. Let us assume to start with that
no pi or qj is prime in the ordinary integers.

In this case, we can show that the ratio k/ℓ ≤ 3 by counting the number
of ordinary prime factors of n. We count with multiplicity, meaning that if a
prime appears to the rth power in n, it is counted r times. Since each qj has
at most 6 ordinary prime factors (by the lemma), n = q1 · · · qℓ has at most
6ℓ ordinary prime factors. On the other hand, since no pi is prime, each pi
has at least two ordinary prime factors. Thus, n = p1 · · · pk has at least 2k
ordinary prime factors. Hence,

2k ≤ # ordinary prime factors of n ≤ 6ℓ,

forcing k/ℓ ≤ 6/2 = 3.
Now suppose that some pi is prime, say p1. Then by unique factorization

in the ordinary integers, some qj = p1, and we can assume (reordering if
necessary) that j = 1. Canceling p1 = q1 in (*),

p2 · · · pk = q2 · · · qℓ.



If any remaining pi is an ordinary prime, we can continue the process. After
finitely many steps, we are left with a factorization where none of the remain-
ing pi or qj are prime. (If a remaining qj were an ordinary prime, it would
have to equal some pi, but we removed all pi that are ordinary primes.) If
we have removed s primes, then either s = k = ℓ — which forces k

ℓ
= 1 —

or from the case handled in the last paragraph,

k − s

ℓ− s
≤ 3.

But k
ℓ
≤ k−s

ℓ−s
(since ℓ ≤ k), and so k

ℓ
≤ 3 in this case as well.
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