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WITH SOLUTIONS

Problem 1 (Cold-blooded mathematics). Recall that an object is an n-
reptile if it can be decomposed into n congruent pieces each similar to the
original figure.

If a right triangle with shortest leg 1 is a 5-reptile, what is the length of
the hypotenuse?

Answer.
√

5

Solution. To find such a decomposition, drop a perpendicular from the
vertex of the right triangle to the hypotenuse.

A

B

C
D

Then ∆ABD, ∆BCD, and ∆ACB are similar. Now decompose ∆BCD
as a 4-reptile (every triangle is a 4-reptile!) by joining the midpoints of the
sides (dashed lines).



The 5 interior triangles are now all similar to ∆ABC, and to each other.
To guarantee that they are all congruent, we just need to make sure that they
all have the same area, meaning Area(∆ABC) = 5 · Area(∆ABD). Since
area transforms as the square of the similarity ratio, the sides of ∆ABC are√

5 times as long as the corresponding sides of ∆ABD. In particular, the
hypotenuse has length

√
5.

Thus, the answer is
√

5 — as long as there is a unique answer ! And there
is: With a bit of experimentation, you can convince yourself that the above
construction is essentially unique. In particular, any 5-reptile right triangle
has side lengths in a ratio 1 : 2 :

√
5.

Remark. Reptiles (usually with the spelling “rep-tiles”) were first stud-
ied by Solomon Golomb and were popularized by Martin Gardner in the
Mathematical Games column in the May 1963 issue of Scientific American.

Problem 2 (Colors and numbers). If the positive integers from 1 to 30 are
all colored the same color, then there are guaranteed to be numbers x, y, z
that are all the same color and satisfy x+y = z — a “monochromatic solution
to x + y = z”. At the other extreme, if the positive integers from 1 to 30
are colored 30 different colors, then there are no monochromatic solutions to
x + y = z. What is the smallest integer n for which it is possible to color 1
to 30 with n colors and have no monochromatic solution to x + y = z?

Note: We do not require that x, y, z be distinct. That is, a solution to
x + y = z, where x = y, and where x and z share the same color, counts as
a monochromatic solution.

Answer. 4 (colors)

Solution. The answer is at most 4, as shown by the following coloring with
colors A,B,C,D:

1A 2B 3B 4A 5C 6C 7C 8C 9C 10A

11D 12D 13D 14D 15D 16D 17D 18D 19D 20D

21A 22B 23B 24A 25C 26C 27C 28C 29C 30A

To prove that the answer is at least 4, we must show that there is no way
to color 1, 2, . . . , 30 with three colors that avoids a monochromatic solution.

Suppose that we can color 1, 2, 3, . . . , N with colors A,B,C avoiding a



monochromic solution to x + y = z. Let X be the number of elements
receiving the most popular color, say (without loss of generality) color A.
By the Pigeonhole principle,

N ≤ 3X.

List the integers having color A,

n1 < n2 < · · · < nX ,

and consider the X − 1 differences

n2 − n1, n3 − n1, . . . , nX − n1. (*)

None of these differences can have color A: If nk − n1 has color A, then
nk = n1 + (nk − n1) is an A-monochromatic solution to x + y = z, contrary
to assumption. So at least half of the numbers (*) share the same color, say
B; list these numbers as

m1 < m2 < · · · < mY ,

where
X − 1 ≤ 2Y.

Now consider the Y − 1 differences

m2 −m1, m3 −m1, . . . , mY −m1. (**)

None of these can have color B, as otherwise we have (as above) a B-
monochromatic solution to x + y = z. But none can have color A either:
Each mk −m1 is a difference of two numbers from (*), and so has the form
nj − ni for some i and j. If nj − ni has color A, then nj = ni + (nj − ni) is
an A-monochromatic solution to x + y = z. Thus, the Y − 1 numbers (**)
have color C.

If Y − 1 ≥ 2, consider the difference between any two numbers in the list
(**). Arguing as above, we find that this difference cannot have color C, B,
or A, which is absurd! So

Y ≤ 2.

But then
N ≤ 3X ≤ 3(X − 1) + 3 ≤ 3(2Y ) + 3 ≤ 15.



So as soon as N > 15, any coloring of 1 through N using 3 colors is guaran-
teed to have a monochromatic solution to x + y = z. In particular, this is
guaranteed when N = 30.

Remark. Let N = N(k) be the largest positive integer for which it is
possible to color 1, 2, . . . , N with k colors and avoid a monochromatic solution
to x + y = z. We have seen above that N(3) ≤ 15. Issai Schur proved in
1917 that N(k) exists for all positive integers k, and in fact that

N(k) < bek!c,

where e = 2.71828 . . . is the base of the natural logarithm. Our proof that
N(3) ≤ 15 was obtained by specializing Schur’s argument to k = 3. We
invite you to do the reverse: generalize our proof to establish the inequality
for N(k) given above.

It has been shown that N(1) = 1, N(2) = 4, N(3) = 13, N(4) = 44, and
N(5) = 160. The values of N(k) are unknown for k > 5. That N(5) =
160 was not established until 2018; the computer-assisted proof of this fact
occupies more than two petabytes!

Problem 3 (Unscrambling an egg). The average of a set of integers is com-
puted by taking the sum of the elements divided by the total number of
elements. For example, the average of the set {1, 5} is 1+5

2
= 3 and the

average of the set {1, 5, 6} is 1+5+6
3

= 4.
Let A be a set with 7 elements (so A has 127 nonempty subsets). The

averages of all of the 127 subsets of A are listed below, in increasing order.
What are the 7 elements of A?

Write the numbers you find in increasing order. You must have all the
numbers correct to receive credit for this problem.



1 759
2 969
3 1179
4 1319
5 1389
6 1599
7 2019
8 2334
9 2439
10 2719
11 2859
12 2964
13 3069
14 3279
15 3279
16 3384
17 3447
18 3489
19 3559
20 3699
21 3699
22 3783
23 3804
24 3839
25 3867
26 3979

27 4014
28 4119
29 4119
30 4224
31 4259
32 4259
33 4287
34 4329
35 4329
36 4371
37 4399
38 4434
39 4469
40 4539
41 4539
42 4539
43 4539
44 4644
45 4679
46 4707
47 4819
48 4819
49 4854
50 4959
51 4959
52 4959

53 5043
54 5064
55 5099
56 5127
57 5169
58 5169
59 5169
60 5211
61 5211
62 5239
63 5239
64 5259
65 5274
66 5295
67 5379
68 5379
69 5379
70 5379
71 5379
72 5379
73 5379
74 5519
75 5547
76 5589
77 5589
78 5631

79 5659
80 5694
81 5799
82 5799
83 5799
84 5883
85 5904
86 5939
87 6009
88 6009
89 6009
90 6009
91 6051
92 6079
93 6114
94 6135
95 6219
96 6219
97 6219
98 6324
99 6359
100 6429
101 6499
102 6534
103 6639
104 6639

105 6723
106 6744
107 6779
108 6807
109 6919
110 6975
111 7059
112 7164
113 7199
114 7374
115 7479
116 7619
117 7689
118 7759
119 7899
120 8214
121 8319
122 8739
123 8949
124 9159
125 9579
126 9789
127 9999

Answer. 759, 1179, 2019, 5379, 7899, 9579, 9999

Solution. There are many ad hoc approaches to this problem. In the fol-
lowing we will outline a computationally efficient method valid for any finite
starting set A.

Since A is a set, all the ai are distinct, and we can list them in increasing
order as a1 < a2 < · · · < an. (Distinctness is not actually necessary for
the argument, but makes some steps cleaner.) All the ai appear in the
list because they are the averages of the 1-element subsets. In particular the



smallest average must be a1. Now suppose we have determined the k smallest
elements a1, . . . , ak. Then we classify each average in our list as “known” if
it comes from some subset of {a1, . . . , ak} or “unknown” if it does not (if
an average repeats in our list, then it’s possible some occurrences are known
and others are unknown).

Let x be the smallest unknown average. If x arises as an average of m+1
elements of A then it must have the form

x =

ak+1 +
m∑
i=1

ai

m + 1
,

as any other average of m+1 elements is either larger or known. Notice that
1 ≤ m ≤ k.

From here we can use a little trial and error to determine the value of ak+1

in our particular case (and defer until the end an argument which removes
the reliance on trial and error).

First we know a1 = 759, so our smallest unknown average is 969, and
since 1 ≤ m ≤ k, we get m = 1. This gives the equation

969 =
a2 + a1
1 + 1

,

which implies a2 = 1179.
Now that we know a1 and a2, our smallest unknown average is 1319. Since

1 ≤ m ≤ k we have two possibilities:

1319 =
a3 + a1
1 + 1

,

or

1319 =
a3 + a1 + a2

2 + 1
,

The first of these gives a3 = 1879 which is not possible, because 1879 does
not appear in our list of averages. On the other hand, the second equation
gives a3 = 2019, which does appear in the list of averages.

We could continue this process to find all the numbers, but this will get
computationally expensive. Instead, now we will switch to finding the largest
3 elements of A.

In exact analogy to before, we find a7 = 2019, and a6 satisfies

9789 =
a6 + a7

2
,



giving a6 = 9579. The largest unknown average is 9159, so either

9159 =
a5 + a7

2
,

or

9159 =
a5 + a6 + a7

3
.

The first of these solves to a5 = 8319, while the second solves to a5 = 7899.
Both seem initially possible, but we can note that using 8319 in averages
gives rise to numbers which don’t appear. For example 8319+9579

2
= 9054

which does not appear. Thus a5 = 7899.
We have determined all elements except a4. We could of course proceed

as before with more cases for our trial and error, but instead we will give an
argument that actually the average of A itself is the middle average on the
list, which gives the identity

5259 =
a1 + a2 + a3 + a4 + a5 + a6 + a7

7
,

which solves to give a4 = 5379.

Lemma. The average of A is the middle average on the list.

Proof. For convenience we use the notation |X| to denote the size of the
set X. We shall also use XC to denote the complement of X in A, that is
XC contains all the elements in A that are not in X. Finally, we let AVGS

be the average of set S.
Notice that

|X| · AVGX + |XC | · AVGXC = a1 + a2 + a3 + a4 + a5 + a6 + a7.

Dividing by 7 we find

|X| · AVGX + |XC | · AVGXC

7
= AVGA.

Hence, the average of A can be written as a weighted average of the averages
of |X| and |X|C . This means AVGA lies between AVGX and AVGXC for each
X and so AVGA is in the middle of the list of averages (for us this is the 64th
average).

Q.E.D.



We now explain how to avoid the guess and check strategy of above.
Define

Ap :=

ak+1 +
p∑

i=1

ai

p + 1

Then if x = Am is the smallest unknown average, it satisfies x ≤ Am+1

and x ≤ Am−1.
Note that

(m + 1)x + am+1 = (m + 2)Am+1

≥ (m + 2)x

Rearranging this implies x ≤ am+1.
Similarly, note that

(m + 1)x− am = mAm−1

≥ mx.

Rearranging, this implies am ≤ x.
Therefore am ≤ x ≤ am+1, so we can determine m (and therefore ak+1) by

examining the position of x relative to our already known numbers a1, . . . , ak.
Using this process on the given list of averages, we first find a1 = 759

and the smallest unknown average is 969. This average appears after a1, so
m = 1 and a2 satisfies

969 =
a2 + a1

2
,

so a2 = 1179.
Now the smallest unknown average is 1319, which appears after a2, so

now m = 2 and a3 satisfies

1319 =
a3 + a1 + a2

3
,

so a3 = 2019.
Now we have to compute the new known averages, and once we do, we

find 2334 is the smallest unknown average, so now m = 3 and a4 satisfies

2334 =
a4 + a1 + a2 + a3

4
,

so a4 = 5379.



Now we are pushing the boundaries of what is reasonable to compute
by hand, but if you continued with the process, you would find 2964 is the
smallest unknown average, which appears after a3 but before a4, so m = 3
and a5 satisfies

2964 =
a5 + a1 + a2 + a3

4
,

so a5 = 7899.
Continuing, the next smallest unknown you get is 3384 which again ap-

pears between a3 and a4, so m = 3 and a6 satisfies

3384 =
a6 + a1 + a2 + a3

4
,

so a6 = 9579.
Finally, the last smallest unknown average is 3489 which also appears

between a3 and a4, so m = 3 and a7 satisfies

3489 =
a7 + a1 + a2 + a3

4
,

so a7 = 9999.

Note. You might be wondering why so many numbers above end with 9s.
The idea is that the authors wanted all the averages to be integers, which was
ensured by making sure all the starting numbers were the same modulo 2, 3,
4, 5, 6, and 7. This comes out to be equivalent to a modulo 420 condition,
and so lots of the averages have the same last digit as the chosen starting
numbers.

Authors. Written by Mo Hendon, Paul Pollack, and Peter Woolfitt.


