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Problem 1

An icosahedron is a solid whose twenty faces are all equilateral triangles, five of which
meet at each of its vertices. How many of each of the following shapes can you find on its
surface?

(a) (2pts) Two triangles sharing a single edge.

(b) (2pts) Three triangles as shown here.

(c) (3pts) Two triangles sharing no edges and only one common vertex.

(d) (3pts) Two completely disjoint triangles.

Problem 2

(a) (4pts) Find all polynomials with integer coefficients of the form

p(x) = x2 + p(a)x + a.

(b) (6pts) List all polynomials p(x) with integer coefficients such that

p(x) = x2 + p(p(a))x + a.
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Problem 3

r1

r2

Set-up. Consider the annulus A pictured above. Define an xy-path between two points
P1 and P2 in A to be a sequence of line segments connecting P1 and P2 which satisfy the
following properties:

1. The path stays completely in A (touching the boundary is allowed).

2. Each segment of the path must be parallel to the x-axis or the y-axis.

3. The number of segments is minimal.

Examples:

Fig. 1 Fig. 2 Fig. 3

Figure 1 is not an xy-path as its segments are not parallel to the axes.
Figure 2 is not an xy-path as it has 5 segments but a 4 segment path is possible.
Figure 3 is an xy-path.

(a) (3pts) Given annulus A with inner radius r1 = 2 and outer radius r2 = 3, what is
the number of segments on an xy-path between the uppermost point on A and the
lowermost point on A?

(b) (7pts) Given annulus A with inner radius r1 = 20 and outer radius r2 = 21, what is
the number of segments on an xy-path between the uppermost point on A and the
lowermost point on A?
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Solution 1
It is known that an icosahedron has 12 vertices, 30 edges, and 20 faces. This can be

derived from the given information:
Let V be the number of vertices, E the number of edges, and F the number of faces

of the icosahedron. Now, from the given, each vertex is shared by five edges, so naively
counting suggests that E = 5V ; however, this is not correct, since each edge has two
vertices, this way of counting counts each edge exactly twice. Thus, in fact, E = 5V/2,
or V = 2E/5. Similarly, each face has three edges; however, each edge lies on exactly two
vertices, and counting and correcting for double-counting gives us E = 3F/2, or F = 2E/3.
By Euler’s polyhedron formula, V − E + F = 2, or 2E/5 − E + 2E/3 = E/15 = 2. Thus
E = 30, V = 12, F = 20.

(a) Notice that each edge of the icosahedron, corresponding to the shared edge of the
two faces, determines exactly one such shape. Thus there are exactly 30 such shapes.

(b) Consider the central face of each shape; there are exactly 20 ways to choose such,
and three ways to choose two out of three adjacent faces to comprise the rest of the
shape. Thus there are exactly 20× 3 = 60 such shapes.

(c) Note that each such shape corresponds to exactly one vertex. Thus, we need to
count the number of ways to choose two disjoint triangles meeting at each vertex. At
each vertex, there are five triangles, and thus

(
5
2

)
= 10 ways to choose two of them;

however, exactly five of each will give two consecutive triangles (as in (a)) sharing a
common edge. Thus, there are five ways to choose two triangles at each vertex, and
so we have 5× 12 = 60 such shapes.

(d) There are exactly
(
20
2

)
= 190 ways to choose two triangles. However, if they are

not disjoint, they share either exactly one edge or exactly one vertex. From (a),
the former happens exactly 30 times; from (c), the latter happens exactly 60 times.
Thus, there are exactly 190− 30− 60 = 100 such pairs of disjoint triangles.

4



Solution 2

(a) Evaluating at a we get
p(a) = a2 + p(a)a + a.

which implies that a 6= 1 as well as

p(a) =
a2 + a

1− a
= −a− 2 +

2

1− a
.

Since p(a) is an integer, 1 − a is either ±2 or ±1, i.e a priori a ∈ {−1, 0, 2, 3}. We
thus have four cases; p(x) is one of the following polynomials:

x2 − 1, x2, x2 − 6x + 2, x2 − 6x + 3.

(b) First note that if a = 0, then

p(x) = x2 + p(p(0))x + 0 = x2 + p(0)x = x2.

For the following we freely assume a 6= 0 so we can safely divide by a.

Observe that p(a) is divisible by a. In particular p(a) = an with n := a+p(p(a)) + 1.
This means that p(p(a)) = p(na) is also divisible by a, so let p(p(a)) = ar and the
above definition of n becomes n = a + ar + 1.

Now we can write p(na) = p(p(a)) in two ways, first from the result of plugging
in na into p(x) and second by rearranging the equation n = a + p(p(a)) + 1 to get
p(p(a)) = n− a− 1. Hence

n2a2 + (n− a− 1)na + a = n− a− 1

=⇒ n2a2 − na2 + (n− 1)na− (n− 1) = −2a

=⇒ (n− 1)na2 + (n− 1)na− (n− 1) = −2a

=⇒ (n− 1)(n(a2 + a)− 1) = −2a

=⇒ (a + ar)(n(a2 + a)− 1) = −2a

=⇒ (1 + r)(n(a2 + a)− 1) = −2

Hence (1 + r) | 2, so r ∈ {−3,−2, 0, 1}. This gives 4 cases. Rewriting using n =
(a+ ar + 1), we can search see if there are a values which work for a given r value in
the equation

(a + ar + 1)(a2 + a) = 1− 2

1 + r
.

Case 1: r = −3. The given equation becomes

(−2a + 1)(a2 + a) = 2.
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This has no solutions as −2a + 1 must be an odd divisor of 2, so either a = 0 or
a = 1, neither of which work.

Case 2: r = −2. The given equation becomes

(−a + 1)(a2 + a) = 3.

This has no solutions because a2 + a is even for any integer.

Case 3: r = 0. The given equation becomes

(a + 1)(a2 + a) = −1.

This too has no solutions because a2 + a is even for any integer.

Case 4: r = 1. The given equation becomes

(2a + 1)(a2 + a) = 0.

This has the integral solutions a = 0 and a = −1. We have dealt with the a = 0 case
already, and indeed a = −1 with p(p(a)) = ar = −1(1) = −1 gives rise to the other
valid solution

p(x) = x2 − x− 1.

The only polynomials which work are therefore p(x) = x2 and p(x) = x2 − x− 1.
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Solution 3

(a) We will give a pictorial explanation here and leave the computational details to the
solution of the second part of this problem. We consider sequentially which points
in the annulus we can reach with xy-paths of at most length n starting with the
uppermost point.

n = 1 n = 2 n = 3

n = 4 n = 5

We can reach the lowestmost point in 5 segments but not 4, so the answer is 5.

(b) By symmetry, it suffices to find the number of segments needed to reach some point
on the midline of the annulus starting from the uppermost point. We can then
reflect the path vertically to get an xy-path from top to bottom. In our effort to
get to the mid-line, we may as well choose each segment to have maximum possible
length. Depending on the radii, the number of segments needed will change, and
the boundary case occurs when we are just able to “turn the corner,” i.e. when the
midline point the path described above reaches is a point also on the inner circle.
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Fig. 1 Fig. 2 Fig. 3

Notice that in each of the above figures if we increase the inner radius at all then the
number of segments on the xy-path must increase. As an example, we can calculate
the corresponding condition on the radii in figure 2 then in generality.

O1

O2I0

I1

C0 C1 C2

Using right triangle 4C0O1C1, we compute that O1 =
(√

r22 − r21, r1

)
. Using right

triangle 4C0I1C1, we compute that I1 =
(√

r22 − r21,
√

2r21 − r22

)
. Using right tri-

angle 4C0O2C2, we compute that O2 =
(√

2r22 − 2r21,
√

2r21 − r22

)
. However, the

x-coordinate of O2 should be r1, so we get√
2r22 − 2r21 = r1 =⇒ r1

r2
=

√
2

3
.

Now for the general case:
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On

On+1

In

C0 CnCn+1

In general, if On =
(√

nr22 − nr21,
√
nr21 − (n− 1)r22

)
, then by right triangle4C0InCn,

we compute that In =
(√

nr22 − nr21,
√

(n + 1)r21 − nr22

)
. Finally, using right triangle

right triangle 4C0On+1Cn+1, we compute that

On+1 =

(√
(n + 1)r22 − (n + 1)r21,

√
(n + 1)r21 − nr22

)
.

For some On, the x-coordinate will need to be the same as r1, so in general we have√
nr22 − nr21 = r1 =⇒ r1

r2
=

√
n

n + 1
.

Checking against the figures from before, we can see that if On is the point on the
outer circle with x-coordinate r1, then an xy-path of length 4n+ 1 is barely possible

(i.e. becomes impossible if we increase r1 by any amount). Hence if
√

n−1
n < r1

r2
≤√

n
n+1 , then the number of segments on an xy-path is 4n+ 1. Note that

(
20
21

)2
= 400

441

is a little less that 400
440 = 10

11 . Therefore we conclude that if r1 = 20 and r2 = 21, then
the number of segments on an xy-path between the uppermost point and lowermost
point is 4(10) + 1 = 41.

�
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