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The steady-state assumption is a mainstay for the analysis of ecological systems with more than three or
four states. However, it is well accepted in ecology that inputs to large systems come in pulses assumed
to have a reasonably constant magnitude and frequency. Steady pulse inputs and the use of electro-
chemical–mechanical control systems methodology enables limited short term dynamic responses of
ecological systems of a scale often occurring in systems of potential engineering importance to be ana-
lyzed. This paper explores and presents a survey of multi-input–multi-output (MIMO) control systems
analysis of ecosystem network models to better understand pulse frequency issues and further develop
experimentally verifiable approaches to testing the MIMO concept. The analysis process is demonstrated

using two network model exemplars. Two aspects of MIMO analyses appear relevant to understanding
ecological systems: (1) Eigenvalue invariant analyses and singular value decomposition (SVD) analyses
enable assessment of stability and relative strength of states. Eigenvalues reflect time constants and pro-
vide a check on experimentally determined system matrices. (2) Analysis of SVD versus frequency for
each output indicates maximum pulse frequencies that allow system components to benefit from puls-
ing. As a group, MIMO analyses complement other analytical methods and provide a theoretical systems

yzing
focus convenient for anal

. Introduction

Control theory has been applied to relatively simple linear
iological problems solvable with analytical techniques. Milsum
1966) and Jones (1973) applied single in-single out control theory
o various problems on the human and animal scale analytically.
nalytical and numerical tools available have made huge advances
ince their work, which enables studies of more complex multi-
n–multi-out biochemical process at the human–animal scale and
lso at the cellular scale (Ingalls et al., 2006). More advanced non-
inear analysis has been explored, especially for simpler systems
e.g., see Apreutesei, 2006), however, these approaches become
ractically intractable for larger systems of potential engineering

nterest. Thus, our emphasis is on linear systems analysis with its

ide array of available solution options.

Linear Ecosystem analysis has roots in cybernetics, which is also
he parent discipline of electro-chemical–mechanical control sys-
ems. A popular control system textbook of its time, Dorf (1980)

∗ Corresponding author. Tel.: +1 706 542 3047; fax: +1 706 542 8806.
E-mail address: btollner@engr.uga.edu (E.W. Tollner).

304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2009.08.002
ecosystems from an engineering perspective.
© 2009 Elsevier B.V. All rights reserved.

cites ecosystem modeling work underway in that period. Due to the
multiple inputs and outputs that typify ecosystems, control the-
ory and systems ecology diverged. Patten (1978) and colleagues
adopted the control system format and thinking and assumed
steady state to develop network environ analysis (NEA) (Patten,
1978; Barber et al., 1979; Fath and Patten, 1999; Schramski, 2006).
Ulanowicz (1986, 1997, 2000) developed a similar approach, ascen-
dency analysis, featuring the use of information theory. We anchor
our controls concepts to NEA mainly because we are most familiar
with this analysis approach.

There has been much discussion in ecology about how to make
models. Ecological models are gross simplifications of complex sys-
tems, whose details due to size and complexity are impossible to
describe (Jorgensen and Bendoricchio, 2001). The latter authors
indicate it is important to start modeling with a well defined ques-
tion that circumscribes key elements and processes. Ecological
models are always under-defined and as such unmodeled com-

ponents and processes have a high likelihood of contributing to
observed dynamics.

Network environ analysis (NEA) is the background for this
review. A brief summary of the input-driven, time-forward
methodology follows. (A reverse-time, output referenced analy-

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:btollner@engr.uga.edu
dx.doi.org/10.1016/j.ecolmodel.2009.08.002
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Fig. 1. Steady signal examples with three different frequencies.

is also exists but is not needed for present purposes.) The scalar
ynamical equation is:

˙ i =
n∑

j = 1
in

fij + zi − Tout
i , i = 1, 2, . . . , n, (1)

here fij are the inter-compartmental flows (oriented from com-
artment j to i), Tout

i is throughflow, the sum of each compartment’s
utflows, and zi is the inflow to each compartment from the envi-
onment. A linear matrix equation corresponding to Eq. (1) is:

˙ + Cx = z, (2)

here C can be specifically interpreted in terms of turnover rates
Matis and Patten, 1981; Schramski, 2006):

C] ≡

⎡
⎢⎢⎢⎣

−(�1 − �11) �12 · · · �1n

�21 −(�2 − �22) · · ·
...

... · · · . . .
...

�n1 · · · · · · −(�n − �nn)

⎤
⎥⎥⎥⎦ (3)

ere �ij and �i are total and partial turnover rates, respectively:

i = �i ≡ �out
i

xi
, i = 1, 2, . . . , n, (4)

nd

ij = �ij ≡ fij
xj

, i, j = 1, 2, . . . , n. (5)

teady-state NEA is predicated on ẋ = 0:

+ Cx = z (6)

Perturbations about steady state such as shown in Fig. 1 are
mportant. Jorgensen and Mitsch (1989) and Odum (1989) include
ulsing about homeostatic set points in a list of recommended fea-
ures for ecosystem design. Magnitudes and frequencies of pulses
re not discussed by these authors. Electro-chemical–mechanical
ontrol methodology provides possibilities for operationalizing the
pulse’ ecological engineering principle.

. Objectives

The overall objective of this work is to further operationalize the

orgensen and Mitsch (1989) and Odum (1989) principles of eco-
ogical engineering through examination of pulse frequencies and
heir possibilities of input and output coupling in ways that lend
hem to experimental verification. Using two multi-input–multi-
utput (MIMO) ecological system exemplars, we examine system
lling 220 (2009) 3233–3240

invariants, such as eigenvalues and singular values, in this initial
examination of multi-in–multi-out controls in ecological contexts.

3. Control systems representation of ecological systems

To gain an understanding of control system theory, we begin
with the scalar case of a single input, single output (SISO) first-
order system representing a single compartment in a typical
input–output multi-compartment network model (Matis et al.,
1979). The system state equation appears as a nonhomogeneous
linear differential equation:

ẋ = Ax + Bu
y = Cx + Du

(7a,b)

where x represents the state (typically dimensioned as mass or
energy density), u is the input (Bu = z in Eq. (6), dimensioned as
mass or energy density per unit time), y is the output (dimensioned
depending on what is desired, taken herein as the same as the state
variable x), and A, B, C, and D are coefficients. A has units of recipro-
cal time, B is dimensionless, and C and D are dimensioned to convert
x and u, respectively, to the desired information variable y. Eq. (7a),
an extension of Eq. (2), is a mass balance state-transition expression
in which a linear function of state, Ax, denotes state interchanges
and losses to outputs, and matrix B distributes inputs, u, within the
system interior. Eq. (7b) is a response function that serves as infor-
mation about system outputs, y. The Laplace transform of equations
(7) produces a corresponding frequency form:

sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

(8a,b)

in which the differential Eq. (7a) is transformed to the algebraic
form of 8a, and the algebraic Eq. (7b) becomes 8b. This may be
written as

Y(s) = [C(s − A)−1B + D]U(s) (8c)

where the bracketed terms comprise a transfer function (TF)
matrix, G(s):

Y(s) = G(s)U(s) (8d)

In Eqs. (8), U(s), Y(s) and X(s) represent the Laplace transformed
input, output, and state, respectively. Details on the derivation of
equations (8) are given in such control theory texts as Bay (1999)
and Śiljak (1991). In the first-order SISO system, Y(s) represents the
transformed output and U(s) the transformed input. The variable s
is a complex number that may be represented by a + iω, with ω the
frequency in radians per unit time and a is a real constant often set
equal to zero. As an example, a first-order SISO open-loop TF may
appear as (with D = 0):

Y(s) = CB

s − A
U(s) (8e)

The general approach to understanding Eq. (8c) with respect to
the pulse question is to put frequencies jω in place of s to com-
pare the magnitudes of input versus output pulses as frequency
changes. A standard plot known as the Bode diagram portrays this
information.

Eqs. (7) can also represent any number of inputs or outputs,
which is essential for applying control system analysis to ecological
systems. For MIMO systems, x becomes a vector of system states,

A is the state-transition matrix, B is the input distribution matrix
which relates input vector u to change in the state vector ẋ, C relates
states (described by vector x) to the output vector y, and D is an
input pass-through matrix, taken as zero herein. This nomenclature
will apply throughout the remainder of this discussion.
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Table 1
Labeled state space matrices for the oyster model.

Matrix A (units = day−1)
Filter feeders −.02 0 0 0 0 0
Dep detritus 0.0079 −.022 0 0.18 0.12 0.0047
Microbiota 0 .0082 −3.39 0 0 0
Meiofauna 0 0.0073 0.50 −0.35 0 0
Dep feeders 0 0.0006 0.50 0.027 −0.15 0
Predators 0.0003 0 0 0 0.011 −0.0099

Matrix B (units = unity)
Filter feeders 1
Dep detritus 0
Microbiota 0
Meiofauna 0
Dep feeders 0
Predators 0

Matrix C (units of y/units of x, which in this case is unity)
Filter feeder 1 0 0 0 0 0
Dep detritus 0 1 0 0 0 0
Microbiota 0 0 1 0 0 0
Meiofauna 0 0 0 1 0 0
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Invariant analysis: The initial assessment of any system begins
with stability or eigenvalue analysis. We regard eigenvalues and a
related analysis, the singular value decomposition (SVD), as the first
major generalization involved in going from SISO to MIMO systems.

Table 2
Labeled state space matrices for the tropical forest model.

Matrix A (units = day−1)
Leaves −17.7 0 10.2 0 0
Fib. roots 0 −18.7 0 16 0
Wood 0 3.6 −10.2 0 6.6
Loose litter 16 0 0 −16 0
Mineral soil 0 9.2 0 0 −9.2

Matrix B (units = unity)
Leaves 1 0
Fib. roots 0 1
Wood 0 0
Loose litter 0 0
Mineral soil 0 0

Matrix C (units of y over units of x, which in this case is unity).
Leaves 1 0 0 0 0
Fib. roots 0 1 0 0 0
Dep feeders 0 0
Predators 0 0

ote: D is a 6 × 6 matrix of zeros. Units of x in the state equation are kcal/m2. Units

A canonical form for general MIMO systems in state space is:

can =
[

A B
C D

]
(9)

here A, B, C, and D are control system canonical matrices and
can is a partitioned matrix with the same dimensions as those

or corresponding scalars given with Eq. (7). The canonical system
can is useful for checking dimensions of the state matrices, and

nput and output vectors. The A matrix is a square matrix similar
o the C matrix of Eq. (2) (not to be confused with the C matrix of
he response function of Eq. (7b) herein) used in Network Environ
nalysis (Patten, 1978; Matis and Patten, 1981; Fath and Patten,
999; Schramski, 2006) as developed from the linear differential
quations of compartmental analysis.

. Analysis results

Two small ecosystem models shown in Fig. 2 will serve to
ssess the effect of pulse frequency, observability–controllability,
nd interactions among inputs and outputs. The Dame and Patten
1981) oyster reef energy model (Fig. 2a) represents a one-
nput–six-output system. The Edmisten (1970) tropical rain forest
itrogen model (Fig. 2b) has two inputs and three outputs. Details
f the published food web analysis of each model were input to the
azanci (2007) EcoNet software for analysis. Donor control was
ssumed. EcoNet produced the diagrams of each model portray-
ng the modeled states and connectivity shown in Fig. 2a and b.
coNet also computed standard environ analysis outputs, includ-
ng the key matrices of the analysis (Patten, 1978, 1981, 1982; Fath
nd Patten, 1999; Schramski, 2006). EcoNet also provided an inter-
ace for importing this information into Matlab (Mathworks, 2007).
his research was conducted with extended Matlab 2007 using the

control systems toolbox’ of this software.
The environ analysis input, output, and the NEA C matrix were

hen converted into the control system canonical form of Eq. (1)
sing a Matlab script file, ‘EcoStateSpace.m’ (available from the

uthor). Control analysis was performed using this script file as
ell. An example is shown below.

Forming canonical matrices: Eq. (9) canonical matrices were first
onstructed. The A matrix corresponds to the environ analysis C
atrix. The B matrix contains rows equal to the number of states
0 0 1 0
0 0 0 1

uts are kcal/(m2 day).

and columns equal to the number of inputs. Zeros and ones were
used in B to enable the appropriate inputs, z, from u to be applied
to the appropriate state vector elements when rules of matrix mul-
tiplication are followed. The (matrix) product B*u gives a z vector
with number of rows equal to number of states. The input–output
balance for each state variable is described in the matrices A and B.

The control model C matrix, Eq. (7b), has columns equal to the
number of states and rows equal to the number of outputs. In the-
ory, the output is a linear combination of the state exchanges (C
matrix) plus pass-throughs (D matrix). It was assumed for present
purposes that the desired output was the state at time t, resulting in
C being an identity matrix and D being a matrix of zeros with rows
equal to the number of outputs and columns equal to the number
of inputs. The state space formulations for the oyster and tropical
forest systems are shown in Tables 1 and 2.
Wood 0 0 1 0 0
Loose litter 0 0 0 1 0
Mineral soil 0 0 0 0 1

Note: D is a 5 × 5 matrix of zeros. Units of x in the state equation are g/m2. Units of
inputs are g/(m2 day).
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Table 3a
Oyster reef eigenvalues.

−3.39 0 0 0 0 0
0 −0.0098 0 0 0 0
0 0 −0.15 0 0 0
0 0 0 −0.36 0 0
0 0 0 0 −0.16 0
0 0 0 0 0 −0.02

Note: The SVDs for the oyster system ranged from 3.46 to 0.0086, giving a condition
of 401.09.

Table 3b
Tropical forest eigenvalues.

−1.89 0 0 0 0
0 −12.2 + 10.09i 0 0 0
0 0 −12.2 − 10.09i 0 0
0 0 0 −22.21 + 3.5i 0

while low condition values (e.g., less than 10 or so) are generally
ig. 2. (a) Modeled states and connectivity of the Dame and Patten (1981) oyster r
f the Edmisten (1970) tropical forest nitrogen model. Dimensional units, g N/(m2 d

n analysis of eigenvalues of the A (or NEA’s C) matrix provides a
ook at the fundamental poles of a control system. Systems with
ll negative eigenvalues are inherently stable regardless of inputs.
ince A is square, it can be analyzed for eigenvalues by finding the
oots of the characteristic equation c(�):

(�) = det[A − �I] = 0 (10a)

here � is the set of eigenvalues and c(�) is a polynomial of order
qual to the size of the A matrix.

Borrett et al. (2006) discuss system eigenvalues and their calcu-
ation with respect to environ analysis. Eigenvalues are inversely
elated to time constants. Thus, high eigenvalues indicate small
ime constants and low eigenvalues indicate larger time constants.
n a donor controlled system, the time constant is a product of flow
resistance’ and state storage, thus the high eigenvalues (low time
onstants) usually associate with a small resistance × storage prod-
ct and small eigenvalues (high time constants) associate with high
esistance × storage. Smaller eigenvalues cause larger time lags
etween the input signal and resulting output response. The num-
er of eigenvalues is equal to the number of first-order-equivalent
umber of states, with higher order states expanded to a system
f first-order states. Eigenvalues may repeat or be zero, which in
heory leads to control-related issues. Common control system
nalysis software (e.g., see Mathworks, 2007) routinely provides
ystem eigenvalues.

The system singular value decomposition (SVD) is used to com-

are magnitudes of effects indicated by eigenvalues. Without going

nto details, the SVD is computed by evaluating the square root of
he eigenvalues of the matrix product of transpose of the A matrix
y itself1. SVD values are also routinely provided by controls sys-

1 More generally, for any square matrix A, the singular values of A are the square
oots of the eigenvalues of AHA, where AH refers to the Hermetian conjugate, which is
0 0 0 0 −22.21 − 3.5i

Note: The SVDs for the tropical forest system ranged from 30.39 to 1.89, giving a
condition of 16.07.

tems analyses software. The system condition is a ratio of the largest
to smallest SVD values and this value may correlate with the range
of scales present in the system. In electro-chemical–mechanical
controls, high conditions (e.g., greater than 100 or so) are gener-
ally undesirable due to extreme sensitivity and lack of robustness
more robust to input or process perturbations.
The eigenvalues of the example systems shown in

Tables 3a and 3b have negative real parts, indicating these

the transpose of A with opposite signs for the imaginary component of any complex
element of A. Bay (1999) gives a more general approach for the SVD evaluation of
non-square matrices.
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Table 4
Simplified transfer function G(s) matrix elements for the oyster model.

From input “Filter Feeders” to outputs (column 1 of the G(s) matrix). . .
Filter feeders = 1

s+0.0208

Dep. detritus = 0.0079
(s+0.02)(s+0.015)

Microbiota = 0.00006
(s+3.39)(s+0.015)(s+0.02)

Meiofauna = 0.00006(s+3.95)
(s+3.39)(s+0.36)(s+0.02)(s+0.015)

Dep. feeders = 0.000005(s+10.44)(s+0.47)
(s+3.39)(s+0.36)(s+0.16)(s+0.02)(s+0.015)

which in both cases here is first order as indicated by the one-to-one
slope. The oyster model frequency response decays at frequencies
above approximately 10−3 cycles per day. The forest model decays
at ∼10−1 cycles per day (input to leaves) and ∼1 cycle per day (input

Table 5
Transfer function G(s) matrix elements for the tropical forest model.

From input “Leaves” to output at indicated compartments (column 1 of the
G(s) matrix). . .

Leaves = (s+10.2)(s+9.2)(s+16)(s+18.7)
(s+1.9)(s2+45.48s+529.4)(s2+24.43s+251)

Fibrous roots = 256(s+10.2)(s+9.2)
(s+1.9)(s2+45.48s+529.4)(s2+24.43s+251)

Mineral soil = 2355.2(s+10.2)
(s+1.9)(s2+45.48s+529.4)(s2+24.43s+251)

From input “Fibrous Roots” to output at indicated compartments (column 2 of
the G(s) matrix). . .

Leaves = 36.72(s+16)(s+26.07)
(s+1.9)(s2+45.48s+529.4)(s2+24.43s+251)
E.W. Tollner et al. / Ecologica

ystems are asymptotically stable. The oyster model had several
mall eigenvalues, suggesting high storage time constants in
heir dynamics. The tropical forest model had larger eigenvalues
suggesting low storage time constants; see Table 3b), some with
maginary elements, indicating potential for damped oscillatory
ehavior. Most ecological models analyzed to date have negative
igenvalues, suggesting that the corresponding real networks
re inherently stable. Small eigenvalues raise the possibility of
lack of TF robustness (e.g., would a small perturbation due to

ampling error cause a positive eigenvalue?), which provides a
aunch point for future enquiries. The SVD values of the oyster
ystem ranged from 3.49 down to 0.0086, giving a condition of
01, while the forest system SVD values ranged from about 30.39
o 1.89, giving a condition of about 16. High condition numbers in
lectro-chemical–mechanical systems are suggestive of systems
ith low robustness or likelihood of going unstable in the presence

f perturbations. Condition in ecological systems may be propor-
ional to the range of modeled time scales; thus, high condition
umbers may well be desirable in ecosystems. The results above
uggest that the oyster system as modeled had a wider range of
cales than did the modeled forest system.

Frequency response: The state space form of the system may be
ransformed into a polynomial matrix of transfer functions (TFs)
sing Eqs. (8c) and (8d). The polynomial matrix G(s) is a matrix
f the TFs from each input–output combination (Glad and Ljung,
000). A polynomial TF matrix for a hypothetical system with three

nputs and three outputs is shown in Eq. (11).

(s) =

⎡
⎢⎢⎢⎣

1
s + 1

4
s + 3

−1
s + 10

1
s + 2

0.1
s + 1

1
s + 1−5

s + 1
−3

s + 3
0.1

s + 1

⎤
⎥⎥⎥⎦ (11)

Eq. (11) is presented, fully realizing that it is a form of a system
ot generally recognized by ecological scientists. Each element of
q. (11) represents a transfer function (TF) from input i to output j.
n other words, the path from input i to output j is represented by
F(ij). Essential features of the TFs are (1) roots of the numerator,
nown as zeros (each elemental TF has none in Eq. (11)); (2) roots of
he denominator, known as poles (each elemental TF has one in Eq.
11)); and, (3)the order of the numerator and denominator, which
s the highest power. The denominator order represents the order
f the homogenous differential equation and the numerator repre-
ents the order of the forcing function (always less than the order
f the differential equation). The denominator roots correspond to
igenvalues of the system and the zeros are important for antic-
pating dynamic behavior. Note that the positive sign associated

ith each denominator factor or pole indicates a negative eigen-
alue when, for example, s + 1 (=0) is written as s = −1. Numerator
actors or zeros indicate the presence of derivatives in the forc-
ng functions. All the elements of Eq. (11) are first-order in the
enominator and zero-order in the numerator. Each element in Eq.
11) represents a first-order differential equation with a constant
orcing function.

An inverse Laplace transform will take one back to the state
orm shown in Eqs. (7a,b); however, the inverse transform must be
aken using the system as a whole, which provides the canonical

atrices A, B, C, D shown in Eq. (9), because of interconnections in
he generalized ecological system. As will be seen from discussions
elow, Eq. (11) is indeed a very simple system.
TFs to outputs from the two compartments receiving inputs
f the Fig. 2a oyster model (1 × 6) are presented in Table 4. The
oles (denominator roots) of the denominator correspond to sys-
em eigenvalues (within rounding error) while poles (numerator
oots) correspond to zeros. Table 4 was simplified by cancelling
Predators = 0.0003
(s+0.016)(s+0.010)

Note: since the output y(s) is simply the state x(s), the gains have dimensions of
unity.

terms approximately equal. In addition to the eigenvalues being
negative (compare the denominator roots to values in Table 3a), the
zeros (respective numerators of Table 3a) are also negative and real.
The numerator zeros, where present, tend to accelerate the system
response. In elements where only some of the eigenvalues appear
in the denominator, cancellations with numerator roots occurred.
It is surmised that the multiple short-range feedback paths in the
oyster model (see Fig. 2a) may account for the cancellations. The
predator to filter feeder element was zero as one would expect from
the lack of a path from other elements back to the filter feeders. The
denominator is one or two orders greater than that of the numer-
ator, implying that system dynamics between input and output is
first or second order.

TF elements for the input compartments of the Fig. 2b tropical
forest model are presented in Table 5. The second-order denomina-
tor terms represent complex eigenvalues (that have negative real
components). The second-order numerator terms in the tropical
forest model are substantial, perhaps due to the single but multi-
element feedback path in the tropical forest model (Fig. 2b). As with
the oyster model, the tropical forest system is also first or second
order.

The singular value decomposition (SVD) diagram provides a
Bode-like diagram that represents each input in a MIMO system.
Tools for making the plot are readily available (e.g., Mathworks,
2007). The frequency response can be assessed using the SVD
diagrams shown in Figs. 3 and 4Figures 3 (oyster) and 4 (tropi-
cal forest). This diagram provides a panorama of scales operating
within the respective systems. Frequencies where the curves break
downward are known as corner frequencies. The slope of the curve
beyond the corner frequency indicates the effective system order,
Fibrous roots = (s+17.7) (s+16) (s+10.2)(s+9.2)
(s+1.9)(s2+45.48s+529.4)(s2+24.43s+251)

Mineral soil = 9.2 (s+10.2)(s+16)(s+17.7)
(s+1.9)(s2+45.48s+529.4)(s2+24.43s+251)

Note: since the output y(s) is simply the state x(s), the gains have dimensions of
unity.
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Fig. 3. SVD diagram for the oyster model.

o fibrous roots). The other inflections in the forest model SVD dia-
ram indicate other higher frequency transformations occurring
t other states in the model. This implies that pulse periods are
pproximately 1000 days for the oyster system and approximately
0 days for the forest system. It would be interesting to observe
hat would happen if the oyster reef model were perturbed every

hree years (approx. 1000 days), or when leaves were pulsed every
0 days to the forest system. The 10-day frequency leads one to
onclude that the readily available nitrogen from the leaves was
ubstantially depleted in 10 days. More recalcitrant forms of nitro-
en would be more slowly available and would take a longer time
e.g., a year or so) to be released into the system. The range of
requencies present in the system appears to correlate with the
nference of larger SVD condition numbers correlate with wider
ange of scales present in systems as modeled.

Pulse input plots are shown for the oyster system in Fig. 5 and
he tropical forest system in Fig. 6. These figures visually portray
he output response to an impulse input at each input, based on

he TF elements in Table 4 (oyster model) and Table 5 (tropical for-
st model). The dynamics shown in the respective impulse plots is
onsistent with responses expected for first or second-order sys-
ems. Compartments with an input and an output respond very fast
e.g., filter feeders and predators in the oyster model; leaves and

Fig. 4. SVD diagram for the tropical forest model.
Fig. 5. Impulse response of the oyster system.

fibrous roots in the tropical rain forest model). The more compart-
ments that separate input and outputs (as can be seen in Fig. 2),
the longer the lag in the output response as one would expect.
Complexity in the diagraphs due to cycling (see Fig. 2) resulted in
the tendency for more complex shaped impulse responses (see the
response from filter feeders to deep feeders in the oyster model and
from leaves to fibrous roots in the forest model). The time required
for a pulse to pass through the system based on the compartment
with the longest response time, should determine the frequency
(e.g., 1/time) corresponding to the corner frequency as shown in
Figs. 3 and 4.

Pulses with frequencies less than the corner frequency would
transmit the impulse throughout the system with little attenuation,
while higher frequency (e.g., shorter time period) pulses would be
attenuated. The forest was expected to have an annual period of
one year or a frequency of approximately 0.003 cycles per day due
to the annual leaf fall. The modeled dynamics processed the leaves
much faster. The oyster system period reached beyond an annual
cycle. It seems likely that operation at a frequency at or below the
breakpoint frequency would lead to maximum system robustness.

We have as yet not addressed pulse magnitudes. The food web
analysis involves an implicit steady-state assumption, hence the
system and the corresponding state space and frequency space rep-
resentations would carry forward this assumption. It is likely that
some cyclical variations occurred in the food web analysis such that
some pulsing was in effect represented. Tentatively, we suggest
that the plus or minus pulse departure from the long term aver-
age not be more than 10% or 15%. This topic requires additional
research.

One example where pulsing has proved necessary is in waste
treatment by wetlands (e.g., see Crites and Tchobanoglous, 1998).
Systems are alternately operated and rested on a weekly to monthly
basis, which could provide a platform for an interesting study. Sys-
tems operated without rest periods tended to collapse in short
times. It would be very interesting to have an energy analysis and a
nitrogen analysis for a treatment wetland to assess utility of these
modeling approaches for providing design insights.
In general, there are many kinds of mathematical analyses tools
originally developed and used for engineering purposes that are
now available for application to the growing set of complex systems
problems represented by human interactions with environment.
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Fig. 6. Impulse response

hese include both linear and nonlinear analysis. We envision
ooking at a variety of techniques for nonlinear analysis, includ-
ng Pontrjagin’s principle, in future work. The Pontrjagin principle
its at the pinnacle of a hierarchy of advanced techniques building
n Lyapunov theory, Lagrangian analysis, and Hamiltonian anal-
sis. Each of these embeds assumptions that are just that. Model
pecificity increases as one goes up this hierarchy. Each will involve
xtensive numerical and symbolic tools that are coming available.
n this paper, we start at the general level and reserve the future
xplorations to future papers. These approaches will all find appli-
ation in ecosystem analysis as well as the parallel developments
f control theory application in other biological modeling problems
reviously discussed.

That the compartmental models NEA intersect the control mod-
ls of engineering is fortuitous because it makes possible the
xploration of established methods to the new set of modern-day
roblems.

. Summary findings and implications

In control analyses, as discussed herein, eigenvalues provide
nsights into stability, potential for oscillatory behavior, data valid-
ty checks, and the range of time constants in a system. Positive
igenvalues indicate instability and signals that a compartment
odel may have errors that should be re-examined. Pulsing of

ystems relaxes the steady-state assumption common in model
nvestigations and opens the door to other forms of analysis. For
xample, frequency response analysis identifies the pulse fre-
uency for maximum propagation through the system. Corner
requency on the SVD plot is the upper limit of pulse frequency

system can fully track before the response falls off. In the two

mall models examined, the corner frequencies fell within 0.1–10
imes the reciprocal time unit in the data collection and analysis.
he SVD condition number appears to correlate with the range of
cales present in systems. The time required for an input impulse
o propagate through the system was generally consistent with the
e tropical forest system.

break frequency from the SVD diagram. Pulse analysis lends itself to
experimentation using, for example, spiked inputs of labeled mate-
rials. The linear control analysis presented here offers a rationale
for specifying pulse intervals.

References

Apreutesei, N.C., 2006. Necessary optimality conditions for a Lotka-Volterra three
species system. Mathematical Modeling of Natural Phenomena 1 (1), 123–135.

Barber, M.C., Patten, B.C., Finn, J.T., 1979. Review and evaluation of input–output flow
analysis for ecological applications. In: Matis, J.H., Patten, B.C., White, G.C. (Eds.),
Compartmental Analysis of Ecosystem Models. International Co-operative Pub-
lishing House, Fairland, MD.

Bay, J.S., 1999. Fundamentals of Linear State Space Systems. McGraw-Hill, New York,
NY.

Borrett, S.R., Fath, B.D., Patten, B.C., 2006. Functional integration of ecological net-
works through pathway proliferation. Journal of Theoretical Biology 245 (1),
98–111.

Crites, R., Tchobanoglous, G., 1998. Small and Decentralized Wastewater Manage-
ment Systems. McGraw-Hill, New York, NY.

Dorf, R.C., 1980. Modern Control Systems, 3rd ed. Addison-Wesley, New York, NY.
Dame, R.F., Patten, B.C., 1981. Analysis of energy flows in an intertidal oyster reef.

Marine Ecology Progress Series 5, 115–124.
Edmisten, J., 1970. Preliminary studies of the nitrogen budget of a tropical rain for-

est. In: Odum, H.T., Pigeon, R.F. (Eds.), A Tropical Rain Forest. USAEC Technical
Information Center, Oak Ridge, Tennessee, pp. H-211–H-215, TID-24270.

Fath, B.D., Patten, B.C., 1999. Review of the foundations of network environ analysis.
Ecosystems 2, 167–179.

Glad, T., Ljung, L., 2000. Control Theory: Multivariable and Nonlinear Methods. Taylor
and Francis, New York.

Ingalls, B.P., Tau-Mu Yi, P.A., 2006. Iglesias using control theory to study biology. In:
Szallasi, Z., Stelling, J., Periwal, V. (Eds.), System Modeling in Cellular Biology:
From Concepts to Nuts and Bolts. MIT Press, Cambridge, MA.

Jones, R.W., 1973. Principles of Biological Regulation: An Introduction to Feedback
Systems. Academic Press, New York, NY.

Jorgensen, S.E., Bendoricchio, G., 2001. Fundamentals of Ecological Modeling, 3rd
ed. Elsevier, Amsterdam, Netherlands.

Jorgensen, S.E., Mitsch, W.J., 1989. In: By, W.J., Mitsch, S.E., Jorgensen (Eds.),
Ecological Engineering Principles. Ecological Engineering: An Introduction to

Ecotechnology. John Wiley & Sons, New York.

Kazanci, C., 2007. EcoNet: new software for ecological modeling, simulation and
network analysis. Ecological Modeling 208 (1), 3–8.

Mathworks, 2007. Matlab Version 7.5. Mathworks, Natick, MA.
Matis, J.H., Patten, B.C., 1981. Environ analysis of linear compartmental systems:

the static, time invariant case. In: Proceedings of the 42nd Session of Inter-



3 l Mode

M

M
O

P

P

Ulanowicz, R.E., 1986. Growth & Development: Ecosystems Phenomenology.
240 E.W. Tollner et al. / Ecologica

national Statistical Institute, Bulletin International Statistics Institute, Manila,
Philippines, December 4–14, 1979, 48. Bulletin International Statistics Institute,
pp. 527–565.

atis, J.H., Patten, B.C., White, G.C. (Eds.), 1979. Compartmental Analysis of Ecosys-
tem Models. International Co-operative Publishing House, Fairland, MA, USA, p.
368.

ilsum, J.H., 1966. Biological Control System Analysis. McGraw-Hill, New York, NY.
dum, H.T., 1989. In: Mitsch, W.J., Jorgensen, S.E. (Eds.), Ecological Engineering and
Self Organization. Ecological Engineering: An Introduction to Ecotechnology.
John Wiley & Sons, New York, NY.

atten, B.M., 1978. Systems approach to the concept of environment. Ohio Journal
of Science 78, 206–222.

atten, B.C., 1981. Environs: the super niches of ecosystems. American Zoologist 21,
845–852.
lling 220 (2009) 3233–3240

Patten, B.C., 1982. Environs: relativistic elementary particles for ecology. American
Naturalist 119, 179–219.

Schramski, J.R., 2006. Distributed Control in the Environ Networks of a Seven Com-
partment Model of Nitrogen Flow in the Neuse River Estuary, North Carolina,
USA. Ph.D. dissertation. University of Georgia, Athens, GA.
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