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Utility analysis (Patten, 1991; Fath and Patten, 1999) is quite useful in quantifying direct and indirect
species relations in a compartmental ecosystems model, regardless of its size or complexity. It serves
as a basis for the formulation of system-wide synergism (Fath and Patten, 1998) and mutualism (Fath,
2007) measures. A significant issue that limits the applicability of utility analysis is that its mathematical
formulation requires the convergence of a matrix power series, which may fail for otherwise perfectly

ﬁ?'/l"/zord&‘l ) valid ecosystem models. For example, utility analysis for the well known Neuse river estuary nitrogen
Sylrl:eri,’?sr:i voIs flow models (Baird and Ulanowicz, 1989), collected over 4 years (16 seasons total), do not converge
Mutualism for some seasons, but converge for others. Interestingly, ecologists find the analysis results meaningful

and useful, even when the convergence criteria are not satisfied. This work investigates the cause for
this divergence, analyzes the properties of the matrix power series, and uses an alternative summability
method which transforms the diverging matrix power series into a converging one. In particular, we show
that finitely many applications of the Euler transform are capable of forcing convergence on an otherwise
diverging matrix power series for utility analysis. While the divergence in the regular sense remains, this
work brings forward a strong mathematical argument that the utility analysis, synergism and mutualism
indices, are useful for all ecological network models, regardless of their convergence characteristics.

© 2017 Elsevier B.V. All rights reserved.

Ecological network analysis
Network environ analysis
Input-output analysis

total biomass of a certain species living in an area. These quantities
are transferred as directed flows (Fj;) between compartment pairs.

1. Introduction

Utility analysis (Patten, 1991; Fath and Patten, 1999) is an
invaluable tool to assess the harm or benefit of a species to another,
a species to its ecosystem, and the total sum of harm and benefit

experienced by the entire ecosystem. The latter system-wide mea-
sure is called the synergism index (Fath and Patten, 1998). Utility
analysis applies to flow network models of conservative quantities
(energy, matter), often depicted as directed graphs. These consist
of n compartments (nodes, vertices) interconnected by a set of
directed flows (directed links, edges). The compartments denote
standing stocks (x) as storages of the energy or matter, such as the
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Fj; : Flow rate from compartmentj to compartmenti

z; : Environmental input rate into compartmenti
(1)

y; : Environmental output rate from compartment i

x; : Storage amount at compartment i

Natural systems are composed of thousands, or even millions,
of individuals interacting while the compartments and flows are
idealized simplifications of these interactions attempting to model
the overall fluxes of the studied quantity between different modes
of residence within the system. The network “flows” considered
in ecological models are point transfers of mass or energy between
the node storages, representing interactions such as feeding among
species. The transfer set so constructed represents a system-of-
definition, open to energy and matter exchange at the system
boundaries, incoming as inputs (z), outgoing as outputs (y). The
inputs and storages generate the flows out from a compartment,
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whose sums at ith nodes are the outgoing throughflows (T°U4t).

n
out
Y =yi+ ZFji
j=1
n
Tim =Zi+ ZFU
j=1

The total rate of matter or energy received by a compartment
defines the incoming throughflow (Ti""). The difference of the
incoming and outgoing throughflows defines the change in storage,
forming a differential equation
% =T"(t) - T,."”t(t). (2)
If the storage values stay constant over time (dx;/dt=0), meaning
that the system is at steady-state, then the incoming and outgo-
ing throughflows for each compartment are equal to each other
(Tl.i” = Tl."“f =T;). One advantage of utility analysis is that it does
not require any information about flow kinetics or dynamics. For
an ecosystem model represented as a differential equation (2), it is
relatively easy to perform perturbation simulations to measure the
effects of a compartment on others. However, deriving an accurate
differential equation model of an ecosystem is no easy task, and
sometimes not even feasible. Utility analysis quantifies compart-
mental relationships using only flow rates among compartments
and the environment at steady state.

Utility analysis is built on the direct utility matrix D (Patten,
1991), defined as

Fj F

YT @
utilizing the steady state assumption that total input into and total
output from each compartment equal each other. D;; quantifies the
relative benefit (D; >0) or harm (Dj; < 0) done by compartment j to
compartment i, based on only the direct interactions. For instance,
if j consumes i, F;; >0 and clearly compartment j is harmful for i,
but the relative intensity of this harm depends on the existence of
other consumers of i. For example, if j is the only consumer of i, then
T;=F; +y; so Djj =— Fj;/(Fj; +y;), is near to —1, indicating that j does a
lot of the harm to i. But if compartment i has multiple consumers,
T; will be larger and the relative harm to compartment i done by
compartmentj will decrease. Hence, the ratio —F;;/T; represents the
relative harm j does to i. Similarly, if i consumes j (Fj; >0), then j is
beneficial for i. The ratio Fj/T; represents how beneficial j is for i,
among all resources of i. Eq. (3) defines D as a sum of this direct
benefit and harm received by i from j, in other words, the direct
utility of j for i.

The utility analysis matrix Uy quantifies how beneficial (Uj; > 0)
or harmful (Uj; <0) compartment j is for i over all possible connec-
tions, direct and indirect. Second order effects of j on i are given
by the ij entry of the squared matrix, D2. Indeed, the ij coefficient
of D? is given by (Dz)ij =", DiDyj with DyDy; being the product
of the relative good (or harm) done by compartment j to compart-
ment k with the relative good (or harm) done by compartment k to
compartment i. Summing over all compartments k gives the total
second order effects of compartment j on compartment i. Similarly,
all nth order effects are given by the elements of the nth power, D".
Therefore Uis defined as a matrix power series of the D matrix, simi-
lar to the definitions of pathway, throughflow, and storage analyses
(Patten, 1978, 1985; Fath and Patten, 1999):

U:=I+_D +D*+D3+... (4)
N N——
Direct Indirect

Table 1

Computations for utility analysis for the two models shown in Fig. 1. The numerical
results in this table confirm the visual results presented in Fig. 1(c) and (d). The infor-
mation on the first column clearly shows that 1+D+-..+D" converges to (I— D)™
as n— oo for Model (a), whereas the second column shows that such convergence
is not valid for Model (b), and we have 1+D+D?... % (I- D)1,

Model (a) Model (b)

0 -0.51 -0.24 [ 0 -0.59 -0.097

D [1 0 0.52] 1 0 —-0.66
048 052 0 10.34 0.66 0 |
- [0.77 -0.39 -0.06" [1.59 -1.05 -0.757
ZWOD”’ 0.57 0.71 -0.44 217 191 -1.11
10.51 0.26 0.85 | 10.10 1.47 1.44 |

100 [0.67 —-0.33 0.01 T 259 272 -6.9
ZmZOD’” 0.39 0.59 -0.40 -29.1 393 323
10.52 0.15 0.80 | -37.5 -16.9 19.75
[0.67 —-0.34 0.01 T [0.68 —0.35 0.09 T

(I-D)! 0.39 0.59 -0.40 0.37 0.51 -0.41
10.53 0.15 0.79 | 1048 0.22 0.76 |

0 0
Eigenvalues of D —0.95i —1.045i
+0.95i +1.045i

Since (D™); represents the harm and/or benefit received by i
fromj over all paths of length m, U, defined as the sum of all powers
of D, represents the relationship among all compartments, taking
into account all direct and indirect connections.

2. Occasional failure of utility analysis computations

A significant problem with the mathematical formulation of the
utility matrix (4) limits its use. A necessary condition for the infinite
sum of the powers of D to converge to a finite value is that the
elements in the infinite sum must become smaller (converge to
zero), or at least partially cancel out. In certain cases, the elements
of the matrix D™ may alternate between increasingly high positive
and negative values as the matrix power m increases, as shown in
Fig. 1(d). For those cases the sum defining U diverges. If the infinite
sum converges, it must converge to the matrix (I — D)~ 1. This matrix
can be constructed regardless of the convergence of the infinite
sum (Fath, 2004). It is perhaps tempting to simply define the utility
matrix Uto be (I — D)~! but then the original motivation of summing
all higher order effects is lost.

Indeed, most software performing utility analysis, such as
EcoNet (Kazanci, 2007; Schramski et al., 2011), enaR (Borrett and
Lau, 2014) and NEA.m (Fath and Borrett, 2006), naturally use
(I-D)~! to compute U, as it is not feasible to compute an infi-
nite sum of matrix powers. So the software may display a utility
matrix even in the event that the sum defining utility diverges.
The equivalence (I — D)‘1 = Zi:oDm relies on an apparently frag-
ile limit operation that may fail for some models. Unfortunately
no clear ecological reason has been provided for this failure in the
literature so far. For example, the well known Neuse river estuary
nitrogen flow models (Baird and Ulanowicz, 1989) contain 16 eco-
logical network models based on data collected for four seasons
over four years. The utility analysis matrix converges for some sea-
sons, but not for others. Nevertheless, (I—D)~! can be computed
for all seasons, and appears to provide reasonable and meaningful
information. Yet, without the necessary convergence, we have no
clear explanation as to what the matrix (I— D)~! represents.

To investigate the issue further, we built two similar models
with identical network structures, but with slightly different flow
values, shown in Fig. 1(a) and (b). Table 1 shows essential matri-
ces computed for these two models. The results shown in Fig. 1(c),
(d)and Table 1 clearly demonstrates that the convergence criterion
is satisfied by Model (a), but not by Model (b), despite the strong
similarity between the two models. Current methodology limits
the application of utility analysis to Model (a), and obtained results
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Fig. 1. Two similar ecosystem models are shown. Fig. (c) and (d) shows the partial sum of the powers of D (U™ := Zm

Model (b)
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! 70Dm) for the two models, specifically n vs. U(Z”,).

The dotted horizontal line in both figures shows ((I — D)’1 ),;- We chose the entry 21 arbitrarily, since it would be redundant to show the entire matrix, requiring nine very
similar figures. Fig. (c) shows that the partial sum I+D+-..+D" converges to (I—D)~! as n— oo for Model (a), whereas Fig. (d) shows that this convergence fails for Model
(b). Therefore computation of utility analysis fails for Model (b), but not for Model (a), despite their similarities.

((I-D)~1) are not, by present theory, valid for Model (b). Neverthe-
less, two important observations led us to further investigate this
issue, and utilize appropriate mathematical methods to overcome
this serious limitation:

e The dashed line in Fig. 1(d) passes roughly through the mid-
dle of the diverging series, hinting at the possibility that
I1+D+D2+...=(I—D) ! mightstill hold when alternative summa-
bility methods are utilized for this mathematically diverging but
seemingly “working” series.

e The similarity observed when comparing the matrix (I — D)~ for
the two models in Table 1 hints at the usefulness of (I — D)~! even
when the convergence fails, as compartments of similar models
are likely to have similar utility relations, which happens to be
accurately reflected by (I— D)~ 1.

3. Why does the sum of D powers diverge?

The mathematical reason for this issue relates to the eigenvalues
of D (Patten, 1992). Unfortunately, eigenvalues of D do not appear
to be associated with readily available structural or physical prop-
erties of an ecosystem model. To pinpoint the cause of divergence,
we decompose the D matrix into its eigenvalues and eigenvectors
using linear algebra, in particular, spectral theory (Beezer, 2015).
Unfortunately, there’s little information on the ecological signifi-
cance, interpretation, or the meaning of the individual components
that appear during this analysis. Actually, most of the scalar and
matrix values we utilize are not even real, but complex values with
non-zero imaginary components. Therefore we primarily focus on
the mathematics in order to understand, and then eliminate the
convergence issue for the remaining of this manuscript, with lit-
tle attention given to the ecological significance of the variables or
quantities defined during this process.

First, we show that the infinite sum of the powers of the D matrix
(4) is equal to (I— D)1, only if the largest magnitude of all the

eigenvalues of D is less than 1. We show that D is diagonalizable
(Appendix, Corollary 7) for any compartment model representing
substance storage and flow, enabling the following representation
(Beezer, 2015):

A
D=PAP', A =
An

Here, A is a diagonal matrix of eigenvalues of D, and P is an invert-
ible matrix. Then
AT
D™ = (PAP)" =pPATP-1, A" =
N

We observe that the size of the elements of D™ is directly related
to the size of the elements of A™,as Pand P! are constant matrices
(independent of m). In other words, if powers of the eigenvalues of
D take large values, so will D, and vice versa. The utility analysis
matrix U is defined as:

DM
o) o) m=0
U:=> Dm=P| Y Am|P~'=p p-!
m=0 m=0 00
DM
L m=0 J

(5)

The convergence of the sum (Zf;:OD’") of powers of D entirely
depends on the convergence of the sum of powers of its eigenvalues
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(Zzzok;f forall k=1, ..., n.) In general, for any complex value A,
we have
1 .
am+ _— if |[[A]] <1
T4A422 4= lim 122 ) 1-2 ]

mooco 1—A
Does not exist if“k” >1

Continuing from Eq. (5), we have that

> !
— -2
P Pl =p p-1
S 1
n 1—An
L m=1 J
=P(I—A)'P!
=(I-D)"!

assuming all eigenvalues of D have magnitude less than one (Patten,
1991; Lobanova et al., 2009). In other words,

[o¢]
U= ZD’“ converges to(I — D)~ if and only if H)"‘H <1
m=0

forallk=1,...,n.

Table 1 shows the eigenvalues of Model (a) and Model (b), illustrat-
ing this general result.

4. Eliminating divergence using the Euler transform

What if the magnitude of an eigenvalue of D exceeds one? Then
the sum [+D+D? +... defining U does not converge. As a solution
to this problem, we consider an alternative summability method,
namely the Euler summation (Hardy, 2000), which provides an
alternative method for computing the sum I+D+D2 +. .. even when
the magnitude of an eigenvalue of D exceeds one. The Euler trans-
form of a given series

is defined as

Stm=3 (1) &

n=0 k=0

The Euler transform conserves the sum of the series. In other
words, if the series (6) converges, then so does its Euler trans-
form (7), and to the same sum. On the other hand, it is possible
for the Euler transform to converge even when the original series
diverges. If the series (7) converges, then the series (6) is called
Euler summable. Applying the Euler transform to

ZA”=1+A+AZ+---=
n=0

1
1-A

if|\x|| <1 (8)

we get

o [ M)k
Z k 1 1+x

1 1+2)L+)L2+]+3)»+3)»2+)\3

el T 2 4 8 16
n=0

1 14+A, (1+A2  (1+A)

=32t t7g% *t 16

1 144 1412 1417

=3 [1+T+(T) +—==) . 9)

1 ! assumin, \|u\|<1

T2 1 sll—

2
12
T2 2-(1+A)

Here, the convergence criterion of the transformed series (9) is
H(l +k/2)H < 1 whereas the convergence criterion of the origi-
nal series (8) is ’ MA|| < 1. Does this help in our case? The ultimate
answer is yes, but further work is required to say yes in confidence.
Here’s a typical application of the Euler transform:

. . 1 1.1 1 1 1
Original series (A:_E) 1_§+2_§+E_§
-1 2
+e=d () =3
n=0
1+A4 1,1 1 1 1 1

Euler transform ( S) o+ —+

2 47 2787327128 " 512

Here, both the original series and its Euler transform converge.
However, we observe that the convergence of the transform series
is much faster, as the individual elements in this series converge
to zero much faster than the original series. For ||| > 1, the orig-
inal series will diverge, but its Euler transform may converge. For
example:

Original series (A=-2) 1-2+4-8+16-32+---

= Z(—Z)” diverges
n=0

1+X 1
Euler transform (T = _i)

Tem/ 1\" 1
+o=33(-3) =3
n=0

While the original series diverges, itis Euler summable, and its Euler
sum can be computed using the same formula used for converging
series (8), which is not valid for H)LH > 1.

1.1
16 " 32

_ 2 53, 2 1 1
122427 -2 4 Ly = 3

Sometimes a single Euler transformation may not be enough for
convergence, but successive applications are required. For exam-
ple:
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Original series (A =-10)

First Euler t fi —=
irst Euler transform ( 5 3

~

1-10 9 1. 9 92 93
- 2 2

1-9/2 7. 1 7 72 73
Second Euler transform (T__Z) Z(l_Z+(Z) _(Z) +
) 1-7/4 3. 1 3 32 33
Third Euler transform (T_7§) §(17§+(§) ,(g) +

At this point, we should emphasize that the Euler transformation
is not a magic formula that will force any diverging series into a
converging sum with enough successive applications. Consider the
following example, which has significantly smaller terms than the
previous Euler summable series above.

Original series 142+4+8+16+32+-- = E 2" diverges

2 3 nd n
1 3 3 3 1 3 .
Euler transform 5 <1 + 5 + (j) + (f) +) =5 (§> diverges
n=0

This diverging series is not Euler summable. In fact, this series
cannot be made to converge with any number of iterations of the
Euler transform. Note that all diverging series presented previously
had the property that A < —1. Convergence is already guaranteed
for —1< X <1. However, a series is not Euler summable if A>1.In a
sense, the Euler transformation will help provide an “average” value
for the alternating series, as shown in Fig. 1(d), which fits perfectly
for our purpose. Yet, it is ineffective for diverging non-alternating
series, where all terms in the series have the same sign, indicating
divergence to either +oo or —oo.

Now we return to the convergence question for the power series
defining utility. As we have seen, the convergence of (4) is deter-
mined by the convergence of the geometric sum of the eigenvalues,
Ai. In our case, the eigenvalues are complex numbers. The crite-
rion for Euler summability for sums of powers of complex numbers
is that the real part of A should be less than one. In other words,
1+A+AZ+...is Euler summable if Re(1) < 1. This criterion becomes
clear visualizing the disk of convergences for any complex number
A =x+iy shown in Fig. 2. The disk of convergence is a set of values
for which a series converges, which often forms a circular region.

Original series ||AH <lex*+y’ <1 (10)
. 1+)\ 2 )
First Euler transform 5 <lsesx+1)+y <4 (11)
1+ (42)
Second Euler transform —|<1e (x+3)+y* < 16(12)

In the appendix, we show that eigenvalues of D are purely imagi-
nary or zero (Corollary 6) for any network model. In other words,
the real parts of the eigenvalues of D are always zero, satisfying
the condition Re(1)=0<1 for Euler summability (Fig. 2). This final-
izes our proof that U:=I+D+D?+... is always Euler summable to
(I-D)~1, for any compartment model, regardless of the values of
the eigenvalues of D.

5. Conclusion
A major roadblock to the application of utility analysis for com-

plex systems models has been the verification of the convergence
of the infinite series that defines the utility matrix. In a striking

[o¢]
1710+10071000+1047105+-~=Z(710)" diverges
n=0
Ie=, 9"
4.)252(;(—2) diverges
n=

I, 7" .
)= ZZO(_Z) diverges
n=|

Fig. 2. Figure shows how successive application of Euler transform enlarges the
disk of convergence for the series 1+ +A2 +... where A is a complex number. The
unit disk satisfies Eq. (10), while the larger disk satisfies Eq. (11), and the largest
one satisfies (12). With successive applications of the Euler transform, the disk of
convergence will enlarge to cover any value A if it's real part does not exceed one.
In other words, Euler summability is guaranteed for A provided that Re(A)<1 and
impossible to achieve if Re(1)> 1. Since all eigenvalues of D have zero real parts
(Corollary 6), Euler summability of the D matrix power series is guaranteed.

example of this, Li et al. (2012) treats the city of Beijing as a giant
ecosystem, and uses utility analysis to study the relations between
the city’s main processes such as agriculture, mining, recycling,
domestic consumption, processing and manufacturing and con-
struction. The author states “However, the D matrix power series
does not always converge, and it is necessary to confirm that the
D matrix converges before applying utility analysis.” The data set
used for their model clearly required a great deal of time and effort
to compile. Yet, their manuscript would not be possible if the con-
vergence condition failed

Utility analysis can be viewed as a function f that produces a
matrix representing compartment relations based on a systems
model.

f(F,y,z)=U, f : ecosystem model — species relations

If this function fails on some ecosystem models when there’s
nothing seemingly wrong with the model itself, then a modeler’s
approach should be to ask if the formulation is too restrictive. To
be sure, the field scientists’ observations and intuition supersede
the insights gained by any mathematical or computational model,
as any abstraction of a living system is no longer that living system,
but a mathematical or computational construct that may play by its
own rules. During a discussion of this convergence issue, Bernard
Patten shared his experience that even for ecosystem models where
the convergence criterion was not satisfied, (I—D)~! appeared to
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provide reasonably correct information. This conversation led us
to investigate the original definition of utility analysis further, as
opposed to searching for an alternative or a revision.

Despite its rather technical character, the application of this
work is transparent in use, as it does not develop a new
methodology or construct, but removes an existing obstacle in
current methodology. It is a significant achievement in enabling
widespread adoption of utility analysis for ecosystem models, as it
eliminates the strict requirement that norms of all eigenvalues of
D should be less than one.
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Appendix A. D is diagonalizable, and its eigenvalues are
purely imaginary or zero

The proof follows from the fact that D is always skew-
symmetrizable, and such matrices have purely imaginary eigenval-
ues. We provide a detailed proof requiring only basic linear algebra
knowledge (Beezer, 2015).

Definition 1. A real matrix A is called skew-symmetric (or anti-
symmetric) if A =— A;; for all i, j, or, in other words, A=— AT,

Theorem 2. Eigenvalues of skew-symmetric matrices are purely
imaginary.

Proof. Let A be an eigenvalue of a skew-symmetric matrix A with
the associated eigenvector v.

T T 2
Av=Av = V Av=7v Av=A|y|

Here, v represents the complex conjugate of v, and below such
conjugates generally. Similarly

_T 7-3T _T _ T _T
vV Ar=(A"D) v=(-Av) v=(-Av) v=—(AV) v
T- -
=7 Av=—AlV|?
Since v is an eigenvector, |v|| # 0, so we get
A=—A

which implies that real part of A is zero. Therefore A is either purely
imaginary or zero. [J

Definition 3. Two matrices A and B are called similar if there exists
an invertible matrix P such that A= P~1BP.

Theorem 4. D is always similar to a skew-symmetric matrix.

Proof. We can define D using matrix definition

T

D =T YF - FT)whereT =

where R is defined as a diagonal throughflow matrix. Then

D=T"'(F~F)=1""2(1""2(F - F'yr-1/?)1'/2

=H

This shows that D is similar to a skew-symmetric matrix if H =
T-1/2(F — FT)T-1/2 is a skew-symmetric matrix:

HT = (T-/2(F — FT)T—1/2)T =T V2(FT _ Fyr-1/2
= (T Y2(F-FI)T)=-H
O
Theorem 5. Similar matrices have the same eigenvalues.

Proof. Let A and B similar matrices, and let A be an eigenvalue of
A.

Av=Av
P-1BPy = \v

B(Pv) = A(Pv)
Then A is an eigenvalue of B as well, with eigenvector Pv. O

Corollary 6. Combining the results of all theorems shows that the
eigenvalues of D are either zero or purely imaginary. In other words,
the real parts of the eigenvalues of D are always zero.

Corollary 7. D is always diagonalizable.

Proof. We showed that D is similar to a skew-symmetric matrix.
Real skew-symmetric matrices are normal matrices (ATA=AAT)and
are thus subject to the spectral theorem (Beezer, 2015), which
states that they can be diagonalized by a unitary matrix. O
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